首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J E Coleman  I M Armitage 《Biochemistry》1978,17(23):5038-5045
The interactions of oligodeoxynucleotides with the aromatic residues of gene 5 protein in complexes with d(pA)8 and d(pT)8 have been determined by 1H NMR of the protein in which the five tyrosyl residues have been selectively deuterated either in the 2,6 or the 3,5 positions. Only the 3,5 protons of the three surface tyrosyls (26, 41, and 56) interact with the bases. The remainder of the aromatic protons undergoing base-dependent upfield ring-current shifts on complex formation are phenylalanyl protons, assigned to Phe(13) on the basis of model building. 19F NMR of the complexes of the m-fluorotyrosyl-labeled protein with d(pT)4 and d(pA)8 confirms the presence of ring-current perturbations of nuclei at the 3,5-tyrosyl positions of the three surface tyrosyls. Differential expression of the 19F(1H) nuclear Overhauser effect confirms the presence of two buried and three surface tyrosyl residues. A new model of the DNA binding groove is presented involving Tyr(26)-base-Phe(13) intercalation.  相似文献   

2.
T Pan  G C King  J E Coleman 《Biochemistry》1989,28(22):8833-8839
Deuteriation of all aromatic protons of gene 32 protein (g32P) from phage T4, followed by selective introduction of specific protons, has allowed the precise identification of the number and magnitude of the chemical shift changes induced in the aromatic protons when g32P binds noncooperatively or cooperatively to nucleotides. Signals from five Tyr residues are shifted by binding of g32P to d(pA)8 or d(pA)40-60; however, the change from noncooperative, d(pA)8, to cooperative, d(pA)40-60, binding causes significant increases in the magnitudes of the shifts for only two of these Tyr signals. These two Tyr residues may interact directly with the nucleotide bases, while the shifts associated with the other three Tyr may be due to conformational changes in g32P upon ssDNA binding. Similar conclusions can be drawn for two of the six Phe residues whose protons undergo shifts upon nucleotide binding. Observation of selected proton signals allows for the first time detection by 1H NMR of changes in the proton signals from two Trp residues upon nucleotide binding. The side chains of two Tyr, one or two Phe, and one Trp are probably directly involved in nucleotide base-protein interactions. As assayed by the signals from the H2 and H8 protons of adenine, the bases of a bound nucleotide are undergoing a fast chemical exchange in the noncooperative mode of binding, but shift to slow exchange upon assuming the cooperative mode of ssDNA interaction. When bound to a polynucleotide, the A domain of g32P (residues 254-301) becomes more mobile, as reflected in sharpening of the 1H NMR signals from the A domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1H NMR (500 MHz) of gene 32 protein--oligonucleotide complexes   总被引:6,自引:0,他引:6  
In concentrated solutions, gene 32 single-stranded DNA binding protein from bacteriophage T4 (gene 32P) forms oligomers with long rotational correlation times, rendering 1H NMR signals from most of the protons too broad to be detected. Small flexible N- and C-terminal domains are present, however, the protons of which give rise to sharp resonances. If the C-terminal A domain (48 residues) and the N-terminal B domain (21 residues) are removed, the resultant core protein of 232 residues (gene 32P) retains high affinity for ssDNA and remains a monomer in concentrated solution, and most of the proton resonances of the core protein can now be observed. Proton NMR spectra (500 MHz) of gene 32P and its complexes with ApA, d(pA)n (n = 2, 4, 6, 8, and 10), and d(pT)8 show that the resonances of a group of aromatic protons shift upfield upon oligonucleotide binding. Proton difference spectra show that the 1H resonances of at least one Phe, one Trp, and five Tyr residues are involved in the chemical shift changes observed with nucleotide binding. The number of aromatic protons involved and the magnitude of the shifts change with the length of the oligonucleotide until the shifts are only slightly different between the complexes with d(pA)8 and d(pA)10, suggesting that the binding groove accommodates approximately eight nucleotide bases. Many of the aromatic proton NMR shifts observed on oligonucleotide complex formation are similar to those observed for oligonucleotide complex formation with gene 5P of bacteriophage fd, although more aromatic residues are involved in the case of gene 32P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The conformation of the staphylococcal nuclease-bound metal-dTdA complex, previously determined by NMR methods [Weber, D.J., Mullen, G.P., Mildvan, A.S. (1991) Biochemistry 30:7425-7437] was docked into the X-ray structure of the enzyme-Ca(2+)-3',5'-pdTp complex [Loll, P.J., Lattman, E.E. (1989) Proteins: Struct., Funct., Genet. 5:183-201] by superimposing the metal ions, taking into account intermolecular nuclear Overhauser effects from assigned aromatic proton resonances of Tyr-85, Tyr-113, and Tyr-115 to proton resonances of the leaving dA moiety of dTdA, and energy minimization to relieve small overlaps. The proton resonances of the Phe, Tyr, and Trp residues of the enzyme in the ternary enzyme-La(3+)-dTdA complex were sequence specifically assigned by 2D phase-sensitive NOESY, with and without deuteration of the aromatic protons of the Tyr residues, and by 2D heteronuclear multiple quantum correlation (HMQC) spectroscopy and 3D NOESY-HMQC spectroscopy with 15N labeling. While resonances of most Phe, Tyr and Trp residues were unshifted by the substrate dTdA from those found in the enzyme-La(3+)-3',5'-pdTp complex and the enzyme-Ca(2+)-3',5'-pdTp complex, proton resonances of Tyr-85, Tyr-113, Tyr-115, and Phe-34 were shifted by 0.08 to 0.33 ppm and the 15N resonance of Tyr-113 was shifted by 2.1 ppm by the presence of substrate. The optimized position of enzyme-bound dTdA shows the 5'-dA leaving group to partially overlap the inhibitor, 3',5'-pdTp (in the X-ray structure). The 3'-TMP moiety of dTdA points toward the solvent in a channel defined by Ile-18, Asp-19, Thr-22, Lys-45, and His-46. The phosphate of dTdA is coordinated by the metal, and an adjacent inner sphere water ligand is positioned to donate a hydrogen bond to the general base Glu-43 and to attack the phosphorus with inversion. Arg-35 and Arg-87 donate monodentate hydrogen bonds to different phosphate oxygens of dTdA, with Arg-87 positioned to protonate the leaving 5'-oxygen of dA, thus clarifying the mechanism of hydrolysis. Model building of an additional 5'-dGMP onto the 3'-oxygen of dA placed this third nucleotide onto a surface cleft near residues Glu-80, Asp-83, Lys-84, and Tyr-115 with its 3'-OH group accessible to the solvent, thus defining the size of the substrate binding site as accommodating a trinucleotide.  相似文献   

5.
We identified the major autophosphorylation sites in the insulin receptor and correlated their phosphorylation with the phosphotransferase activity of the receptor on synthetic peptides. The receptor, purified from Fao hepatoma cells on immobilized wheat germ agglutinin, undergoes autophosphorylation at several tyrosine residues in its beta-subunit; however, anti-phosphotyrosine antibody (alpha-PY) inhibited most of the phosphorylation by trapping the initial sites in an inactive complex. Exhaustive trypsin digestion of the inhibited beta-subunit yielded two peptides derived from the Tyr-1150 domain (Ullrich, A, Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) called pY4 and pY5. Both peptides contained 2 phosphotyrosyl residues (2Tyr(P], one corresponding to Tyr-1146 and the other to Tyr-1150 or Tyr-1151. In the absence of the alpha-PY additional sites were phosphorylated. The C-terminal domain of the beta-subunit contained phosphotyrosine at Tyr-1316 and Tyr-1322. Removal of the C-terminal domain by mild trypsinolysis did not affect the phosphotransferase activity of the beta-subunit suggesting that these sites did not play a regulatory role. Full activation of the insulin receptor during in vitro assay correlated with the appearance of two phosphopeptides in the tryptic digest of the beta-subunit, pY1 and pY1a, that were inhibited by the alpha-PY. Structural analysis suggested that pY1 and pY1a were derived from the Tyr-1150 domain and contained 3 phosphotyrosyl residues (3Tyr(P] corresponding to Tyr-1146, Tyr-1150, and Tyr-1151. The phosphotransferase of the receptor that was phosphorylated in the presence of alpha-PY at 2 tyrosyl residues in the Tyr-1150 domain was not fully activated during kinase assays carried out with saturating substrate concentrations which inhibited further autophosphorylation. During insulin stimulation of the intact cell, the 3Tyr(P) form of the Tyr-1150 domain was barely detected, whereas the 2Tyr(P) form predominated. We conclude that 1) autophosphorylation of the insulin receptor begins by phosphorylation of Tyr-1146 and either Tyr-1150 or Tyr-1151; 2) progression of the cascade to phosphorylation of the third tyrosyl residue fully activates the phosphotransferase during in vitro assay; 3) in vivo, the 2Tyr(P) form predominates, suggesting that progression of the autophosphorylation cascade to the 3Tyr(P) form is regulated during insulin stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Takayama Y  Harada E  Kobayashi R  Ozawa K  Akutsu H 《Biochemistry》2004,43(34):10859-10866
The roles of aromatic residues in redox regulation of cytochrome c(3) were investigated by site-directed mutagenesis at every aromatic residue except for axial ligands (Phe20, Tyr43, Tyr65, Tyr66, His67, and Phe76). The mutations at Phe20 induced large chemical shift changes in the NMR signals for hemes 1 and 3, and large changes in the microscopic redox potentials of hemes 1 and 3. The NMR signals of the axial ligands of hemes 1 and 3 were also affected. Analysis of the nature of the mutations revealed that a hydrophobic environment and aromaticity are important for the reduction of the redox potentials of hemes 1 and 3, respectively. There was also a global effect. The replacement of Tyr66 with leucine induced chemical shift changes for heme 4, and changes in the microscopic redox potentials of heme 4. The mutations of Tyr65 induced changes in the chemical shifts and microscopic redox potentials for every heme, suggesting that Tyr65 stabilizes the global conformation, thereby reducing the redox potentials. In contrast, although the mutations of His67 and Phe76 caused chemical shift changes for heme 2, they did not affect its redox potentials, showing these residues are not important. All noncoordinated aromatic residues conserved in the cytochrome c(3) subfamily with heme binding motifs CXXCH, CXXXXCH, CXXCH, and CXXXXCH (Phe20, Tyr43, and Tyr66) are involved in the pi-pi interaction, which causes a decrease in the redox potential of the interacting heme. The global effect can be attributed to either direct or indirect interactions among the four hemes in the cyclic architecture.  相似文献   

7.
The role of protein residues in activating the substrate in the reaction catalyzed by the flavoprotein p-hydroxybenzoate hydroxylase was studied. X-ray crystallography (Schreuder, H. A., Prick, P.A.J., Wieringa, R.K., Vriend, G., Wilson, K.S., Hol, W.G. J., and Drenth, J. (1989) J. Mol. Biol. 208, 679-696) indicates that Tyr-201 and Tyr-385 form a hydrogen bond network with the 4-OH of p-hydroxybenzoate. Therefore, site directed mutants were constructed, converting each of these tyrosines into phenylalanines. Spectral (visible and fluorescence) properties, reduction potentials, and binding constants are very similar to those of wild type, indicating that there are no major structural changes in the mutants. In the absence of substrate, the mutants and wild type exhibit similar pH-dependent changes in the FAD spectrum. However, the enzyme-substrate complex of Tyr-201----Phe lacks an ionization observed in both wild type and Tyr-385----Phe, which preferentially bind the phenolate form of substrates. Tyr-201----Phe shows no preference, indicating that Tyr-201 is required to ionize the substrate. The mutants have less than 6% the activity of the wild type enzyme. The effects on catalysis were studied by stopped flow techniques. Reduction of FAD by NADPH is slower by 10-fold in Tyr-201----Phe and 100-fold in Tyr-385----Phe. When the reduced Tyr-201----Phe-p-hydroxybenzoate complex reacts with oxygen, a long-lived flavin-C(4a)-hydroperoxide is observed, which slowly eliminates H2O2 with very little hydroxylation. Thus, the role of Tyr-201 is to activate the substrate by stabilizing the phenolate. Tyr-385----Phe reacts with oxygen to form 25% oxidized enzyme, and 75% flavin hydroperoxide, which successfully hydroxylates the substrate. This mutant also hydroxylates the product (3, 4-dihydroxybenzoate) to form gallic acid.  相似文献   

8.
The isoinhibitor IIA from bull seminal plasma was investigated in aqueous solution by 1H nuclear magnetic resonance (n.m.r.). The analysis of the 1H n.m.r. data was based on individual resonance assignments, which are described in the following paper. Large conformation-dependent chemical shifts for aliphatic amino acid side-chains, numerous slowly exchanging amide protons and unusual pH titrations of two aromatic residues show that this protein forms a compact, globular conformation. This form of the protein is stable between pH 4 and 12 at 25 degrees C, and between 5 and 50 degrees C at pH 4.9. At temperatures above 50 degrees C there is evidence for an equilibrium between several different conformations, with the rate of exchange between the different species being in the intermediate range on the n.m.r. time-scale. Preliminary data are presented for the individual exchange rates of 18 backbone amide protons. Among the four aromatic rings, Phe10, Phe38 and Tyr16 undergo rapid 180 flips over the entire temperature range, whereas for Tyr32 a temperature-dependent transition from low-frequency to high-frequency flipping motions was observed.  相似文献   

9.
The proton NMR spectra and role in peptide binding of carboxyl-terminal and NH2-terminal neurophysin residues were studied by preparation of bovine neurophysin-I derivatives from which residues 90-92 had been cleaved by carboxypeptidase or residues 1-8 excised by trypsin. The carboxypeptidase-treated protein showed normal peptide-binding behavior. NMR comparisons of this derivative and the native protein allowed identification of proton resonances associated with residues 89-92, confirmed a lack of functional role for this region of the protein, and permitted new observations on the behavior of neurophysin's aromatic residues. The trypsin-treated protein bound peptide with an affinity only 1/50 that of the native protein at pH 6 but evinced the same binding specificity and pH dependence of binding as the native protein. These results argued against direct interaction of residues in the 1-8 sequence with bound peptide and for a role for these residues, particularly Arg-8, in conformational stabilization of the active site; this role is held to be additional to the reported influence of 1-8 on dimerization. NMR comparisons of the trypsin product and native protein allowed preliminary assignment of a set of alkyl proton resonances to residues within the 1-8 sequence and were compatible with a restricted environment for Arg-8. Conformational differences between native and trypsin-treated proteins were manifest particularly by differences in the NMR spectra of Phe and Tyr-49 ring protons. The behavior of Phe ring protons was consistent with the reported decreased dimerization constant of the trypsin product and suggested participation of Phe-22 or -35 in dimerization. The behavior of Tyr-49 provided the first direct evidence of a change in secondary or tertiary structure associated with excision of residues 1-8. Suggested mechanisms by which this conformational change reduces binding include a direct effect on Tyr-49 and/or a conformational rearrangement of active site residues near Tyr-49.  相似文献   

10.
M Paci  C Gualerzi 《Biochemistry》1986,25(10):2765-2769
The quaternary interactions of Escherichia coli DNA binding proteins NS1, NS2, and NS (NS1 + NS2) have been studied by 1H NMR spectroscopy at 400 MHz following the reversible spectral changes produced by temperature increases on the resonances (Phe ring and His C-2 protons) whose spectral characteristics reflect the formation and dissociation of either homologous or heterologous interactions. These changes include (a) a progressive intensity decrease of the Phe resonances shifted to high field by stacking interactions, (b) a progressive intensity increase of the resonances due to freely rotating Phe, and (c) splitting of the His C-2 proton resonance. The association constants and thermodynamic parameters for the homologous and heterologous interactions were calculated from the molar fractions of the relevant molecular species by assuming that the above effects are due to the existence of simple association equilibria. It was found that two (out of three) phenylalanine residues of each polypeptide chain are involved in quaternary interactions. Quantitative data concerning the internal mobility and mutual orientations in aggregates of these Phe rings were also obtained. From the calculated association constants, from comparison of these data with recent protein-protein cross-linking results [Losso, M. A., Pawlik, R. T., Canonaco, M. A., & Gualerzi, C. O. (1986) Eur. J. Biochem. 155, 27-32], and from other considerations, we suggest that even though stacking of the Phe rings occurs at the interface between monomers, the temperature-dependent alteration of the Phe spectrum monitors shifts of the dimer in equilibrium tetramer equilibrium whereas the splitting of the His C-2 proton resonance most likely monitors the equilibrium between tetramers and larger aggregates.  相似文献   

11.
Formation of cytochrome c (cyt c)/cardiolipin (CL) peroxidase complex selective toward peroxidation of polyunsaturated CLs is a pre-requisite for mitochondrial membrane permeabilization. Tyrosine residues - via the generation of tyrosyl radicals (Tyr) - are likely reactive intermediates of the peroxidase cycle leading to CL peroxidation. We used mutants of horse heart cyt c in which each of the four Tyr residues was substituted for Phe and assessed their contribution to the peroxidase catalysis. Tyr67Phe mutation was associated with a partial loss of the oxygenase function of the cyt c/CL complex and the lowest concentration of H(2)O(2)-induced Tyr radicals in electron paramagnetic resonance (EPR) spectra. Our MS experiments directly demonstrated decreased production of CL-hydroperoxides (CL-OOH) by Tyr67Phe mutant. Similarly, oxidation of a phenolic substrate, Amplex Red, was affected to a greater extent in Tyr67Phe than in three other mutants. Tyr67Phe mutant exerted high resistance to H(2)O(2)-induced oligomerization. Measurements of Tyr fluorescence, hetero-nuclear magnetic resonance (NMR) and computer simulations position Tyr67 in close proximity to the porphyrin ring heme iron and one of the two axial heme-iron ligand residues, Met80. Thus, the highly conserved Tyr67 is a likely electron-donor (radical acceptor) in the oxygenase half-reaction of the cyt c/CL peroxidase complex.  相似文献   

12.
The amino acid sequence for the variant-3 (CsE-v3) toxin from the venom of the scorpion Centruroides sculpturatus Ewing contains eight aromatic residues. By use of 2D NMR spectroscopic methods, the resonances from the individual protons (NH, C alpha H, C beta H',H", and the ring) for each of the individual aromatic residues have been completely assigned. The spatial arrangement of the aromatic ring systems with respect to each other has been qualitatively analyzed by 2D-NOESY techniques. The results show that Trp-47, Tyr-4, and Tyr-42 are in close spatial proximity to each other. The NOESY contacts and the ring current induced shifts in the resonances of the individual protons of Tyr-4 and Trp-47 suggest that the aromatic ring planes of these residues are in an orthogonal arrangement. In addition, the spatial proximity of the rings in the pairs Tyr-4, Tyr-58; Tyr-42, Tyr-40; and Tyr-40, Tyr-38 has also been established. A comparison with the published crystal structure suggests that there is a minor rearrangement of the aromatic rings in the solution phase. No 2D-NOESY contacts involving Phe-44 and Tyr-14 to any other aromatic ring protons have been observed. The pH dependence of the aromatic ring proton chemical shifts has also been studied. These results suggest that the Tyr-58 phenolic group is experiencing a hydrogen-bonding interaction with a positively charged group, while Tyr-4, -14, -38, and -40 are experiencing through-space interactions with proximal negatively charged groups. The Trp-47 indole NH is interacting with the carboxylate groups of two proximal acidic residues. These studies define the microenvironment of the aromatic residues in the variant-3 neurotoxin in aqueous solution.  相似文献   

13.
1. The aromatic proton resonances in the 360-MHz 1H nuclear magnetic resonance (NMR) spectrum of bovine pancreatic ribonuclease were divided into histidine, tyrosine and phenylalanine resonances by means of pH titrations and double resonance experiments. 2. Photochemically induced dynamic nuclear polarization spectra showed that one histidine (His-119) and two tyrosines are accessibly to photo-excited flavin. This permitted the identification of the C-4 proton resonance of His-119. 3. The resonances of the ring protons of Tyr-25, Tyr-76 and Tyr-115 and the C-4 proton of His-12 were identified by comparison with subtilisin-modified and nitrated ribonucleases. Other resonances were assigned tentatively to Tyr-73, Tyr-92 and Phe-46. 4. On addition of active-site inhibitors, all phenylalanine resonances broadened or disappeared. The resonance that was most affected was assigned tentatively to Phe-120. 5. Four of the six tyrosines of bovine RNase, identified as Tyr-76, Tyr-115 and, tentatively, Tyr-73 and Tyr-92, are titratable above pH 9. The rings of Tyr-73 and Tyr-115 are rapidly rotating or flipping by 180 degrees about their C beta--C gamma bond and are accessible to flavin in photochemically induced dynamic nuclear polarization experiments. Tyr-25 is involved in a pH-dependent conformational transition, together with Asp-14 and His-48. A scheme for this transition is proposed. 6. Binding of active-site inhibitors to bovine RNase only influences the active site and its immediate surroundings. These conformational changes are probably not connected with the pH-dependent transition in the region of Asp-14, Tyr-25 and His-48. 7. In NMR spectra of RNase A at elevated temperatures, no local unfolding below the temperature of the thermal denaturation was observed. NMR spectra of thermally unfolded RNase A indicated that the deviations from a random coil are small and might be caused by interactions between neighbouring residues.  相似文献   

14.
One- and two-dimensional NMR studies were performed on the complexes of porcine pancreatic phospholipase A2 with substrate analogs bound to a micellar lipid-water interface of fully deuterated dodecylphosphocholine. The interactions between the inhibitor and the enzyme were localized by comparison of the two-dimensional NOE spectra recorded for the enzyme-inhibitor complex using both protonated and selectively deuterated inhibitors. These experiments led us to the following conclusions for the phospholipase-A2-micelle complex: (i) the 38-kDa phospholipase A2 complex gives NMR spectra with relatively narrow lines, which is indicative of high mobility of the enzyme; (ii) the residues Ala1, Trp3, Phe63 and Tyr69 located in the interface recognition site, as well as Phe22, Tyr75, Phe106 and Tyr111 are involved in the micelle-binding process; (iii) when present on the micelle, phospholipase A2 is stereospecific for the inhibitor binding; (iv) the inhibitor, (R)-dodecyl-2-aminohexanol-1-phosphoglycol, binds stoichiometrically to phospholipase A2 with high affinity (Kd less than or equal to 10 microM); (v) the inhibitor binds in the active site of the enzyme, which is evidenced by large chemical-shift differences for Phe5, Ile9, Phe22, His48, Tyr52 and Phe106; (vi) the acyl chain of the inhibitor makes hydrophobic contacts (less than 0.4 nm) near Phe5, Ile9, Phe22 and Phe106. Comparison of our results on the enzyme-inhibitor-micelle ternary complex with the crystal structure of the enzyme-inhibitor complex [Thunnissen, M. M. G. M., AB, E., Kalk, K. H., Drenth, J., Dijkstra, B. W., Kuipers, O. P., Dijkman, R., de Haas, G. H. & Verheij, H. M. (1990) Nature 347, 689-691] shows that the mode of inhibitor binding is similar.  相似文献   

15.
The functional relevance of aromatic residues in the upper part of the transmembrane domain-1 of purinergic P2X receptors (P2XRs) was examined. Replacement of the conserved Tyr residue with Ala had a receptor-specific effect: the P2X1R was non-functional, the P2X2R, P2X4R, and P2X3R exhibited enhanced sensitivity to ATP and αβ-meATP accompanied by prolonged decay of current after washout of agonists, and the P2X7R sensitivity for agonists was not affected, though decay of current was delayed. The replacement of the P2X4R-Tyr42 with other amino acids revealed the relevance of an aromatic residue at this position. Mutation of the neighboring Phe and ipsilateral Tyr/Trp residues, but not the contralateral Phe residue, also affected the P2X2R, P2X3R, and P2X4R function. Double mutation of ipsilateral Tyr42 and Trp46 P2X4R residues restored receptor function, whereas the corresponding P2X2R double mutant was not functional. In contrast, mutation of the contralateral Phe48 residue in the P2X4R-Y42A mutant had no effect. These results indicate that aromatic residues in the upper part of TM1 play important roles in the three-dimensional structure of the P2XRs and that they are required not only for ion conductivity but also for specificity of agonist binding and/or channel gating.  相似文献   

16.
The Xrcc3 protein, which is required for the homologous recombinational repair of damaged DNA, forms a complex with the Rad51C protein in human cells. Mutations in either the Xrcc3 or Rad51C gene cause extreme sensitivity to DNA-damaging agents and generate the genomic instability frequently found in tumors. In the present study, we found that the Xrcc3 segment containing amino acid residues 63–346, Xrcc363–346, is the Rad51C-binding region. Biochemical analyses revealed that Xrcc363–346 forms a complex with Rad51C, and the Xrcc363–346– Rad51C complex possesses ssDNA and dsDNA binding abilities comparable to those of the full-length Xrcc3–Rad51C complex. Based on the structure of RecA, which is thought to be the ancestor of Xrcc3, six Xrcc3 point mutants were designed. Two-hybrid and biochemical analyses of the Xrcc3 point mutants revealed that Tyr139 and Phe249 are essential amino acid residues for Rad51C binding. Superposition of the Xrcc3 Tyr139 and Phe249 residues on the RecA structure suggested that Tyr139 may function to ensure proper folding and Phe249 may be important to constitute the Rad51C-binding interface in Xrcc3.  相似文献   

17.
M-CSF is known to induce cytoskeletal reorganization in macrophages and osteoclasts by activation of phosphatidylinositol 3-kinase (PI3K) and c-Src, but the detailed mechanisms remain unclear. We find, unexpectedly, that tyrosine (Tyr) to phenylalanine (Phe) mutation of Tyr-721, the PI3K binding site in the M-CSF receptor c-Fms, fails to suppress cytoskeletal remodeling or actin ring formation. In contrast, mutation of c-Fms Tyr-559 to Phe blocks M-CSF-induced cytoskeletal reorganization by inhibiting formation of a Src Family Kinase SFK.c-Cbl.PI3K complex and the downstream activation of Vav3 and Rac, two key mediators of actin remodeling. Using an add-back approach in which specific Tyr residues are reinserted into c-Fms inactivated by the absence of all seven functionally important Tyr residues, we find that Tyr-559 is necessary but not sufficient to transduce M-CSF-dependent cytoskeletal reorganization. Furthermore, this same add-back approach identifies important roles for Tyr-697 and Tyr-721 in collaborating with Tyr-559 to recruit a multimeric signaling complex that can transduce signals from c-Fms to the actin cytoskeleton.  相似文献   

18.
The pH dependence of the 1H NMR spectrum of staphylococcal nuclease H124L was investigated as a function of the binding of Ca2+, the ion required for enzymatic activity, and deoxythymidine-3',5'-diphosphate (pdTp), a competitive inhibitor. The protein studied was the product of a cloned gene expressed in Escherichia coli which yields a protein having a sequence identical to that of the nuclease isolated from the V8 strain of Staphylococcus aureus. Of the observable ring protons of the three histidine residues, only the C delta 1H of His46 shows a large chemical shift perturbation on formation of the ternary complex, (nuclease H124L).pdTp.Ca2+. The pKa of His46 is lowered by 0.2 pH unit in the binary complex. All seven tyrosines titrate with normal pKa values between 9 and 11 in the unligated nuclease. In the ternary complex, however, the pKa values of Tyr85 and Tyr93 increase above pH 11.0. The chemical shift perturbations of the ring protons of the Tyr27, Tyr85, Tyr113, and Tyr115 were observed between pH 4 and 6; these spectral perturbations are attributed to interactions with carboxylate groups. Binding Ca2+ alone acted opposite to the perturbation in Tyr113 and Tyr115. Ca2+ binding leads to deshielding the ring protons of Tyr113, but this effect is removed in the ternary complex. Binding of pdTp and Ca2+ stabilizes the protein against high pH denaturation up to pH 11.5.  相似文献   

19.
Stereoselectively beta-deuterated species were synthesized of Ac-His-NHMe, Ac-His-OEt, Ac-His-OH and H-His-NHMe, which are useful as models of histidine residues in peptides. From the spectral comparison of 1H n.m.r., the beta-proton resonances of the normal species were unambiguously assigned. In (C2H3)2SO, C2(2)H5O2H, C2H3O2H, and C5(2)H5N solution and in aqueous solution, the lower-field and higher-field components of beta-proton resonances of the four histidine derivatives are assigned to the pro-R and pro-S protons, respectively. The alternative assignments apply for Ac-His-NHMe, Ac-His-OEt and Ac-His-OH in non-polar solvents such as C2HCl3. Vicinal coupling constants 3J alpha beta S and 3J alpha beta R were obtained for calculating the fractional populations of rotamers about the C alpha-C beta bond. The rotamer populations depend little on the ionization states of the alpha-amino and carboxyl groups or the imidazole ring. The rotamer populations depend significantly on the solvent polarity, similar to those of Phe, Tyr and Trp derivatives. For the two beta-proton resonances of His, Phe, Tyr, and Trp derivatives in a variety of solvents, linear relationships are found between the differences in chemical shifts and the differences in vicinal coupling constants.  相似文献   

20.
Yuen CT  Davidson AR  Deber CM 《Biochemistry》2000,39(51):16155-16162
Analyses of transmembrane domains of proteins have revealed that aromatic residues tend to cluster at or near the lipid-water interface of the membrane. To assess protein-membrane interactions of such residues, a viable mutant library was generated of the major coat protein of bacteriophage M13 (a model single membrane-spanning protein) in which one or the other of its interfacial tyrosine residues (Tyr-21 and Tyr-24) is mutated. Using the interfacial tryptophan (Trp-26) as an intrinsic probe, blue shifts in fluorescence emission spectra and quenching constants indicated that mutants with a polar amino acid substitution (such as Y24D or Y24N) are less buried in a deoxycholate micelle environment than in the wild type protein. These polar mutants also exhibited alpha-helix to beta-structure transition temperatures in incremental-heating circular dichroism studies relatively lower than those of wild type and nonpolar mutants (such as Y21V, Y21I, and Y24A), indicating that specific side chains in the lipid-water interface influence local protein-micelle interactions. Mutant Y21F exhibited the highest transition temperature, suggesting that phenylalanine is ostensibly the most effective interfacial anchoring residue. Using phage viability as the assay in a combination of site-directed and saturation mutagenesis experiments, it was further observed that both Tyr residues could not simultaneously be "knocked out". The overall results support the notion that an interfacial Tyr is a primary recognition element for precise strand positioning in vivo, a function that apparently cannot be performed optimally by residues with simple aliphatic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号