首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Listeria monocytogenes is a gram-positive bacterium whose carbohydrate metabolic pathways are poorly understood. We provide evidence for an inducible phosphoenolpyruvate (PEP):fructose phosphotransferase system (PTS) in this pathogen. The system consists of enzyme I, HPr, and a fructose-specific enzyme II complex which generates fructose-1-phosphate as the cytoplasmic product of the PTS-catalyzed vectorial phosphorylation reaction. Fructose-1-phosphate kinase then converts the product of the PTS reaction to fructose-1,6-bisphosphate. HPr was shown to be phosphorylated by [32P]PEP and enzyme I as well as by [32P]ATP and a fructose-1,6-bisphosphate-activated HPr kinase like those found in other gram-positive bacteria. Enzyme I, HPr, and the enzyme II complex of the Listeria PTS exhibit enzymatic cross-reactivity with PTS enzyme constituents from Bacillus subtilis and Staphylococcus aureus.  相似文献   

3.
The transport of fructose in Bacillus subtilis was studied in various mutant strains lacking the following activities: ATP-dependent fructokinase (fruC), the fructose 1-phosphate kinase (fruB) the phosphofructokinase (pfk), the enzyme I of the phosphoenolpyruvate phosphotransferase system (the thermosensitive mutation ptsI1), and a transport activity (fruA). Combinations of these mutations indicated that the transport of fructose in Bacillus subtilis is tightly coupled to its phosphorylation either in fructose 1-phosphate, identified in vivo and in vitro or in fructose 6-phosphate identified by indirect lines of evidence. These steps of fructose metabolism were shown to depend on the activity of the enzyme I of the phosphoenolpyruvate phosphotransferase systems. The fruA mutations affect the transport of fructose when the bacteria are submitted to catabolite repression. The mutations were localized on the chromosome of Bacillus subtilis in a cluster including the fruB gene. When grown in a medium supplemented by a mixture of potassium glutamate and succinate the fruA mutants are able to carry on the two vectorial metabolisms generating fructose 6-phosphate as well as fructose 1-phosphate. A negative search of strictly negative transport mutants in fruA strains indicated that more than two structural genes are involved in the transport of fructose.  相似文献   

4.
Two novel procedures have been used to regulate, in vivo, the formation of phosphoenolpyruvate (PEP) from glycolysis in Streptococcus lactis ML3. In the first procedure, glucose metabolism was specifically inhibited by p-chloromercuribenzoate. Autoradiographic and enzymatic analyses showed that the cells contained glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-diphosphate, and triose phosphates.Dithiothreitol reversed the p-chloromercuribenzoate inhibition, and these intermediates were rapidly and quantitatively transformed into 3- and 2-phosphoglycerates plus PEP. The three intermediates were not further metabolized and constituted the intracellular PEP potential. The second procedure simply involved starvation of the organisms. The starved cells were devoid of glucose 6-phosphate, fructose 6-phosphate, fructose- 1,6-diphosphate, and triose phosphates but contained high levels of 3- and 2-phosphoglycerates and PEP (ca. 40 mM in total). The capacity to regulate PEP formation in vivo permitted the characterization of glucose and lactose phosphotransferase systems in physiologically intact cells. Evidence has been obtained for "feed forward" activation of pyruvate kinase in vivo by phosphorylated intermediates formed before the glyceraldehyde-3-phosphate dehydrogenase reaction in the glycolytic sequence. The data suggest that pyruvate kinase (an allosteric enzyme) plays a key role in the regulation of glycolysis and phosphotransferase system functions in S. lactis ML3.  相似文献   

5.
Growth of Pseudomonas cepacia on fructose, mannitol, or sorbitol depended on formation of an inducible fructokinase (forming fructose-6-phosphate) and the presence of enzymes of the Entner-Doudoroff pathway. Mutants deficient in any of these enzymes failed to utilize the aforementioned carbohydrates. Fructokinase deficiency did not affect growth of the bacteria on glucose. Fructose was accumulated intracellularly by active transport. Mutants blocked in transport of fructose grew normally on mannitol or sorbitol despite their inability to utilize fructose. Growth on either of these hexitols or on galactitol was accompanied by induction of two hexitol dehydrogenases, one active primarily with mannitol and the other active with sorbitol and galactitol. As expected, a mutant deficient in mannitol dehydrogenase failed to utilize mannitol as a carbon and energy source but grew normally on sorbitol and galactitol. Extracts of bacteria grown on fructose, mannitol, or sorbitol and higher levels of phosphoglucose isomerase than extracts of bacteria grown on alternate carbon sources such as citrate or phthalate. The higher levels were due to appearance of a second phosphoglucose isomerase species not present in cells with the lower activity. The results indicate that the initial steps in fructose utilization by P. cepacia differ from those of most other pseudomonads, which transport fructose by phosphoenolpyruvate-dependent translocation, forming fructose-1-phosphate, and suggest that degradation of fructose, mannitol, and sorbitol occurs primarily via the Entner-Doudoroff pathway.  相似文献   

6.
Fructose and mannitol are fermented by Clostridium thermocellum in a medium containing salts and 0.5% yeast extract. The initial reaction in the catabolism of fructose was found to be the formation of fructose l-phosphate by phosphoenolpyruvate (PEP):fructose phosphotransferase which resembles the Kundig-Roseman phosphotransferase system. The phosphorylation of fructose l-phosphate to form fructose-1, 6-diphosphate is catalyzed by fructose l-phosphate kinase. Fructose-1, 6-diphosphate can be further metabolized by the Embden-Meyerhof pathway. The formation of both PEP:fructose phosphotransferase and fructose l-phosphate kinase is induced by growth in fructose medium. Mannitol catabolism was found to proceed by the phosphorylation of mannitol by PEP:mannitol phosphotransferase to form mannitol l-phosphate. Mannitol l-phosphate is converted to fructose 6-phosphate by a nicotinamide adenine dinucleotide-specific mannitol l-phosphate dehydrogenase. The fructose 6-phosphate formed in the reaction can enter the glycolytic scheme. The formation of both PEP:mannitol phosphotransferase and mannitol l-phosphate dehydrogenase is induced by growth in mannitol medium. Evidence is presented for the induction by mannitol of PEP:mannitol phosphotransferase and mannitol l-phosphate dehydrogenase in suspensions of fructose-grown cells.  相似文献   

7.
In Xanthomonas campestris pv. campestris, fructose is transported and phosphorylated into fructose 1-phosphate through a phosphoenolpyruvate-dependent phosphotransferase system. The nucleotide sequence of the fruA gene encoding the phosphotransferase system permease specific of fructose (EIIFru) was determined. The fructose 1-phosphate produced by the phosphotransferase system is phosphorylated into fructose 1,6-bisphosphate by a 1-phosphofructokinase. This enzyme was characterized and the corresponding gene (fruK) was sequenced. Sequence comparisons revealed that FruK is a member of a new family of ATP-binding proteins composed of sugar (or sugar-phosphate) kinases. In phosphotransferase system-deficient strains, fructose can still be transported by an unidentified permease. The intracellular fructose is then phosphorylated by a multimeric fructokinase of 135 kDa specific for fructose and inhibited by fructose, fructose 1,6-bisphosphate, and mannose. Several other enzymes of fructose metabolism were assayed and a potential pathway for fructose catabolism is presented.  相似文献   

8.
Pyrophosphate : fructose-6-phosphate phosphotransferase (PPi-PFK) has been purified 150-fold from potato tubers and the kinetic properties of the purified enzyme have been investigated both in the forward and the reverse direction. Saturation curves for fructose 6-phosphate and also for fructose 1,6-bisphosphate were sigmoidal whereas those for PPi and Pi were hyperbolic. In the presence of fructose 2,6-bisphosphate, the affinity for fructose 6-phosphate and for fructose 1,6-bisphosphate were greatly increased and the kinetics became Micha?lian. The effect of fructose 2,6-bisphosphate was increased by the presence of fructose 6-phosphate and decreased by the presence of Pi. Consequently, the Ka for fructose 2,6-bisphosphate was as low as 5 nM for the forward reaction and reached 150 nM for the reverse reaction. On the basis of these properties, a procedure allowing one to measure fructose 2,6-bisphosphate in amounts lower than a picomole, is described.  相似文献   

9.
Regulation of climacteric respiration in ripening avocado fruit   总被引:4,自引:3,他引:1       下载免费PDF全文
Ripening of avocado fruit is associated with a dramatic increase in respiration. In vivo31P nuclear magnetic resonance spectroscopy revealed large increases in ATP levels accompanying the increase in respiration. Both glycolytic enzymes, phosphofructokinase, and pyrophosphate: fructose-6-phosphate phosphotransferase were present in avocado fruit with the latter activity being highly stimulated by fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate levels increased approximately 90% at the onset of ripening, suggesting that the respiratory increase in ripening avocado fruit may be regulated by the activation of pyrophosphate:fructose-6-phosphate phosphotransferase by an increase in fructose 2,6-bisphosphate.  相似文献   

10.
Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-(13C)Fru]sucrose, [1-(13C)Glc]sucrose, and [13C6Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTS(Man) or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.  相似文献   

11.
Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two sorbitol-6-phosphate dehydrogenase (Stl6PDH) genes (srlD1 and srlD2) identified in the genome sequence were constitutively expressed at a high level in this mutant strain. Both Stl6PDH enzymes were shown to be active, and high specific activity could be detected in the overexpressing strains. Using resting cells under pH control with glucose as a substrate, both Stl6PDHs were capable of rerouting the glycolytic flux from fructose-6-phosphate toward sorbitol production with a remarkably high efficiency (61 to 65% glucose conversion), which is close to the maximal theoretical value of 67%. Mannitol production was also detected, albeit at a lower level than the control strain (9 to 13% glucose conversion), indicating competition for fructose-6-phosphate rerouting by natively expressed mannitol-1-phosphate dehydrogenase. By analogy, low levels of this enzyme were detected in both the wild-type and the lactate dehydrogenase-deficient strain backgrounds. After optimization, 25% of sugar conversion into sorbitol was achieved with cells grown under pH control. The role of intracellular NADH pools in the determination of the maximal sorbitol production is discussed.  相似文献   

12.
Reversal of the Mannitol-Sorbitol Diauxie in Escherichia coli   总被引:16,自引:12,他引:4  
In Escherichia coli K-12 the proteins involved in the dissimilation of mannitol and sorbitol are specified by two separate gene clusters. The mannitol cluster appears to consist of a regulatory gene mtlC, a gene mtlA coding an enzyme II complex of the phosphoenolpyruvate phosphotransferase system, and a gene mtlD coding a mannitol-1-phosphate dehydrogenase. Three corresponding genes, sblC, sblA, and sblD, exist for the sorbitol pathway. In both pathways the hexitol captured from the medium and delivered into the cytoplasm as a phosphorylated compound is dehydrogenated to fructose-6-phosphate. The enzyme II complex for sorbitol is able to catalyze the phosphorylation also of mannitol if this substrate is present at high concentrations. Consequently mtlA(-) mutants lacking the enzyme II complex for mannitol can grow on mannitol either if the sorbitol phosphorylating system is preinduced by sorbitol or if mtlA is suppressed by a mutation of sblC to constitutivity. In wild-type cells, the induction of the enzymes in the mannitol pathway and dissimilation of the substrate are not prevented by glucose. The sorbitol system, however, is sensitive to glucose and to mannitol as well. In the suppressed strains (mtlA(-), sblC(c)) in which mannitol is utilized through the sorbitol enzyme, glucose becomes effective in restraining the consumption of mannitol, causing a definite diauxie. Moreover, in a mixture of mannitol and sorbitol, the latter is utilized preferentially. This reversal of normal diauxic pattern is consequent to the fact that the enzyme II complex for sorbitol has relatively poor affinity for mannitol.  相似文献   

13.
G A Daniels  G Drews    M H Saier  Jr 《Journal of bacteriology》1988,170(4):1698-1703
In photosynthetic bacteria such as members of the genera Rhodospirillum, Rhodopseudomonas, and Rhodobacter a single sugar, fructose, is transported by the phosphotransferase system-catalyzed group translocation mechanism. Previous studies indicated that syntheses of the three fructose catabolic enzymes, the integral membrane enzyme II, the peripheral membrane enzyme I, and the soluble fructose-1-phosphate kinase, are coordinately induced. To characterize the genetic apparatus encoding these enzymes, a Tn5 insertion mutation specifically resulting in a fructose-negative, glucose-positive phenotype was isolated in Rhodobacter capsulatus. The mutant was totally lacking in fructose fermentation, fructose uptake in vivo, phosphoenolpyruvate-dependent fructose phosphorylation in vitro, and fructose 1-phosphate-dependent fructose transphosphorylation in vitro. Extraction of the membrane fraction of wild-type cells with butanol and urea resulted in the preparation of active enzyme II free of contaminating enzyme I activity. This preparation was used to show that the activity of enzyme I was entirely membrane associated in the parent but largely soluble in the mutant, suggesting the presence of an enzyme I-enzyme II complex in the membranes of wild-type cells. The uninduced mutant exhibited measurable activities of both enzyme I and fructose-1-phosphate kinase, which were increased threefold when it was grown in the presence of fructose. Both activities were about 100-fold inducible in the parental strain. Although the Tn5 insertion mutation was polar on enzyme I expression, fructose-1-phosphate kinase activity was enhanced, relative to the parental strain. ATP-dependent fructokinase activity was low, but twofold inducible and comparable in the two strains. A second fru::Tn5 mutant and a chemically induced mutant selected on the basis of xylitol resistance showed pleiotropic loss of enzyme I, enzyme II, and fructose-1-phosphate kinase. These mutants were used to clone the fru regulon by complementing the negative phenotype with a wild-type cosmid bank.  相似文献   

14.
Fructose-2,6-bisphosphatase (EC 3.1.3.46), which hydrolyzes fructose 2,6-bisphosphate to fructose 6-phosphate and Pi, has been purified to apparent homogeneity from spinach leaves and found to be devoid of fructose-6-phosphate,2-kinase activity. The isolated enzyme is a dimer (76 kDa determined by gel filtration) composed of two 33-kDa subunits. The enzyme is highly specific and displays hyperbolic kinetics with its fructose 2,6-bisphosphate substrate (Km = 32 microM). The products of the reaction, fructose 6-phosphate and Pi, along with AMP and Mg2+ are inhibitors of the enzyme. Nonaqueous cell fractionation revealed that, like the fructose 2,6-bisphosphate substrate, fructose-2,6-bisphosphatase as well as fructose-6-phosphate,2-kinase occur in the cytosol of spinach leaves.  相似文献   

15.
The clostridia are a diverse group of obligately anaerobic bacteria with potential for the fermentative production of fuels, solvents and other chemicals. Several species exhibit a broad substrate range, but there have been few studies of the mechanisms involved in regulation of uptake and metabolism of fermentable carbohydrates.Clostridium beijerinckii(formerlyClostridium acetobutylicum) NCIMB 8052 exhibited transport activity for hexoses and hexitols. Glucose-grown cells transported glucose and fructose, but not galactose, glucitol (sorbitol) or mannitol, transport of which was induced by growth on the respective substrates. Phosphorylation of glucose, fructose, glucitol and mannitol by cell extracts was supported by phosphoenolpyruvate, indicating the involvement of a phosphotransferase system in uptake of these substrates. Fructose phosphorylation was also demonstrated by isolated membranes in the presence of fructose 1-phosphate, thus identifying this derivative as the product of the fructose phosphotransferase system. The presence of phosphotransferase activities in extracts prepared from cells grown on different carbon sources correlated with transport activities in whole cells, and the pattern of transport activities reflected the substrate preference of cells growing in the presence of glucose and another carbon source. Thus, glucose and fructose were co-metabolised, while utilization of glucitol was prevented by glucose, even in cells which were previously induced for glucitol metabolism. Of the substrates examined, only galactose appeared to be transported by a non-phosphotransferase mechanism, since a significant rate of phosphorylation of this sugar was supported by ATP rather than phosphoenolpyruvate.  相似文献   

16.
Upon differential centrifugation of cell-free extracts of Trypanosoma brucei, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase behaved as cytosolic enzymes. The two activities could be separated from each other by chromatography on both blue Sepharose and anion exchangers. 6-phosphofructo-2-kinase had a Km for both its substrates in the millimolar range. Its activity was dependent on the presence of inorganic phosphate and was inhibited by phosphoenolpyruvate but not by citrate or glycerol 3-phosphate. The Km of fructose-2,6-bisphosphatase was 7 microM; this enzyme was inhibited by fructose 1,6-bisphosphate (Ki = 10 microM) and, less potently, by fructose 6-phosphate, phosphoenolpyruvate and glycerol 3-phosphate. Melarsen oxide inhibited 6-phosphofructo-2-kinase (Ki less than 1 microM) and fructose-2,6-bisphosphatase (Ki = 2 microM) much more potently than pyruvate kinase (Ki greater than 100 microM). The intracellular concentrations of fructose 2,6-bisphosphate and hexose 6-phosphate were highest with glucose, intermediate with fructose and lowest with glycerol and dihydroxyacetone as glycolytic substrates. When added with glucose, salicylhydroxamic acid caused a decrease in the concentration of fructose 2,6-bisphosphate, ATP, hexose 6-phosphate and fructose 1,6-bisphosphate. These studies indicate that the concentration of fructose 2,6-bisphosphate is mainly controlled by the concentration of the substrates of 6-phosphofructo-2-kinase. The changes in the concentration of phosphoenolpyruvate were in agreement with the stimulatory effect of fructose 2,6-bisphosphate on pyruvate kinase. At micromolar concentrations, melarsen oxide blocked almost completely the formation of fructose 2,6-bisphosphate induced by glucose, without changing the intracellular concentrations of ATP and of hexose 6-phosphates. At higher concentrations (3-10 microM), this drug caused cell lysis, a proportional decrease in the glycolytic flux, as well as an increase in the phosphoenolypyruvate concentrations which was restricted to the extracellular compartment. Similar changes were induced by digitonin. It is concluded that the lytic effect of melarsen oxide on the bloodstream form of T. brucei is not the result of an inhibition of pyruvate kinase.  相似文献   

17.
A metabolic pathway, known as the mannitol cycle in fungi, has been identified as a new entity in the eulittoral mangrove red algaCaloglossa leprieurii (Montagne) J. Agardh. Three specific enzymes, mannitol-1-phosphate dehydrogenase (Mt1PDH; EC 1.1.1.17), mannitol-1-phosphatase (MtlPase; EC 3.1.3.22), mannitol dehydrogenase (MtDH; EC 1.1.1.67) and one nonspecific hexokinase (HK; EC 2.7.1.1) were determined and biochemically characterized in cell-free extracts. Mannitol-1-phosphate dehydrogenase showed activity maxima at pH 7.0 [fructose-6-phosphate (F6P) reduction] and pH 8.5 [oxidation of mannitol-1-phosphate (Mt1P)], and a very high specificity for both carbohydrate substrates. TheK m values were 1.4 mM for F6P, 0.09 mM for MOP, 0.020 mM for NADH and 0.023 mM for NAD+. For the dephosphorylation of MOP, MtlPase exhibited a pH optimum at 7.2, aK m value of 1.2 mM and a high requirement of Mg2+ for activation. Mannitol dehydrogenase had activity maxima at pH 7.0 (fructose reduction) and pH 9.8 (mannitol oxidation), and was less substrate-specific than Mt1PDH and MtlPase, i.e. it also catalyzed reactions in the oxidative direction with arabitol (64.9%), sorbitol (31%) and xylitol (24.8%). This enzyme showedK m values of 39 mM for fructose, 7.9 mM for mannitol, 0.14 mM for NADH and 0.075 mM for NAD+. For the non-specific HK, only theK m values for fructose (0.19 mM) and glucose (7.5 mM) were determined. The activities of the anabolic enzymes Mt1PDH and MtlPase were always at least two orders of magnitude higher than those of the degradative enzymes, indicating a net carbon flow towards a high intracellular mannitol pool. The function of mannitol metabolism inC. leprieurii as a biochemical adaptation to the environmental extremes in the mangrove habitat is discussed.Abbreviations F6P fructose-6-phosphate - HK hexokinase - Mt1P mannitol-1-phosphate - Mt1PDH mannitol-1-phosphate dehydrogenase - Mt1Pase mannitol-1-phosphatase - MtDH mannitol dehydrogenase  相似文献   

18.
Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-13CFru]sucrose, [1-13CGlc]sucrose, and [13C6Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTSMan or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.  相似文献   

19.
In the absence of fructose 6-phosphate, the regulatory protein of rat liver glucokinase (hexokinase IV or D) inhibited this enzyme, though with a much (15-fold) lower potency than in the presence of a saturating concentration of fructose 6-phosphate. Evidence is provided that this inhibition is not due to contaminating fructose 6-phosphate. In the presence of regulatory protein, sorbitol 6-phosphate, a potent analog of fructose 6-phosphate, exerted a hyperbolic, partial inhibition on glucokinase, the degree of which increased with the concentration of regulatory protein. Plots of the reciprocal of the difference between the rates in the absence and in the presence of sorbitol 6-phosphate versus 1/[sorbitol 6-phosphate] at various concentrations of regulatory protein were linear, and demonstrated that the apparent affinity for sorbitol 6-phosphate increased with the concentration of regulatory protein. Plots of the reciprocal of the difference between 1/v in the presence and in the absence of sorbitol 6-phosphate versus 1/[sorbitol 6-phosphate] were also linear and crossed the axis at a value independent of the concentration of regulatory protein. Fructose 1-phosphate released the inhibition exerted by the regulatory protein in a hyperbolic fashion. The concentration of this effector required for a half-maximal effect increased linearly with the concentrations of sorbitol 6-phosphate and of regulatory protein. These results are consistent with a model in which the regulatory protein exists under two conformations, one form which binds inhibitors and glucokinase, and the other which binds activators, although not glucokinase. Sorbitol 6-phosphate, 2-deoxysorbitol 6-phosphate and mannitol 1-phosphate, all analogs of the open-chain configuration of fructose 6-phosphate, inhibited glucokinase in the presence of regulatory protein at lower concentrations than fructose 6-phosphate, whereas fixed analogs of the furanose form of fructose 6-phosphate were inactive or behaved as activators. This indicated that fructose 6-phosphate in its open-chain configuration is recognized by the regulatory protein. A series of compounds exerted an activating effect. These included, in order of decreasing potency: fructose 1-phosphate, psicose 1-phosphate, ribitol 5-phosphate, analogs of fructose 1-phosphate and of ribitol 5-phosphate and, at much higher concentrations, inorganic phosphate.  相似文献   

20.
Sorbitol metabolism in Aerobacter aerogenes   总被引:3,自引:2,他引:1       下载免费PDF全文
Sorbitol (d-glucitol) metabolism in Aerobacter aerogenes PRL-R3 is shown to proceed via the pathway: sorbitol --> sorbitol 6-phosphate --> d-fructose 6-phosphate. Sorbitol phosphorylation is mediated by a phosphoenolpyruvate (PEP):sorbitol 6-phosphotransferase system, and sorbitol 6-phosphate oxidation by a pyridine-nucleotide-linked dehydrogenase. Mutants deficient in sorbitol 6-phosphate dehydrogenase or a component (enzyme I) of the phosphotransferase system did not grow on sorbitol, whereas revertants which had regained these enzymatic activities grew normally. Extracts of the enzyme I-deficient mutant failed to catalyze the phosphorylation of sorbitol in the presence of PEP, and adenosine 5'-triphosphate could not replace the PEP requirement for sorbitol phosphorylation in extracts of the wild-type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号