首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrospinning of poly(glycolic acid) (PGA)/chitin blend solutions in 1,1,1,3,3,3-hexafluoro-2-propanol was investigated to fabricate biodegradable and biomimetic nanostructured scaffolds for tissue engineering. The morphology of the electrospun PGA/chitin blend nanofibers was investigated with a field emission scanning electron microscope. The PGA/chitin blend fibers have average diameters of around 140 nm, and their diameters have a distribution in the range 50-350 nm. The miscibility of PGA/chitin blend fibers was examined by differential scanning calorimetry. The PGA and chitin were immiscible in the as-spun nanofibrous structure. An in vitro degradation study of PGA/chitin blend nanofibers was conducted in phosphate-buffered saline, pH 7.2. It was found that the hydrolytic cleavage of PGA in the blend nanofibers was accelerated by the coexistence of hydrophilic chitin. To assay the cytocompatability and cell behavior on the PGA/chitin blend nanofibrous scaffolds, cell attachment and spreading of normal human epidermal fibroblasts seeded on the scaffolds were studied. Our results indicate that the PGA/chitin blend nanofibrous matrix, particularly the one that contained 25% PGA and 75% chitin with bovine serum albumin coating, could be a good candidate for tissue engineering scaffolds, because it has an excellent cell attachment and spreading for normal human fibroblasts.  相似文献   

2.
Lim JS  Ki CS  Kim JW  Lee KG  Kang SW  Kweon HY  Park YH 《Biopolymers》2012,97(5):265-275
In this study we investigated the blend electrospinning of poly(?‐caprolactone) (PCL) and silk fibroin (SF) to improve the biodegradability and biocompatibility of PCL‐based nanofibrous scaffolds. Optimal conditions to fabricate PCL/SF (50/50) blend nanofiber were established for electrospinning using formic acid as a cosolvent and three‐dimensional (3D) PCL/SF blend nanofibrous scaffolds were prepared by a modified electrospinning process using methanol coagulation bath. The physical properties of 2D PCL/SF blend nanofiber mats and 3D highly porous blend nanofibrous scaffolds were measured and compared. To evaluate cytocompatibility of the 3D blend scaffolds as compared to 3D PCL nanofibrous scaffold, normal human dermal fibroblasts were cultured. It is concluded that biodegradability and cytocompatibility could be improved for the 3D highly porous PCL/SF (50/50) blend nanofibrous scaffold prepared by blending PCL with SF in electrospinning. In addition to the blending of PCL and SF, the 3D structure and high porosity of electrospun nanofiber assemblies may also be important factors for enhancing the performance of scaffolds. © 2011 Wiley Periodicals, Inc. Biopolymers 97: 265–275, 2012.  相似文献   

3.
Yeo IS  Oh JE  Jeong L  Lee TS  Lee SJ  Park WH  Min BM 《Biomacromolecules》2008,9(4):1106-1116
Electrospinning of collagen (COL)/silk fibroin (SF) blend solutions in 1,1,1,3,3,3-hexafluoro-2-propanol was investigated for fabrication of a biocompatible and biomimetic nanostructured scaffold for tissue engineering. The morphology of the electrospun COL/SF blend nanofibers was observed by scanning electron microscopy. The average diameters of COL/SF blend fibers ranged from 320 to 360 nm, irrespective of SF content in the blends. Both COL and SF components in the as-spun COL/SF blend matrices were stabilized by glutaraldehyde and water vapor, respectively, under the saturated glutaraldehyde aqueous solution at 25 degrees C. The glutaraldehyde vapor chemically stabilized the COL component via cross-linking, whereas the water vapor physically stabilized the SF component via crystallization to the beta-sheet structure. These structural changes of after-treated COL/SF blend matrices were examined using ATR-IR and CP/MAS (13)C NMR spectroscopy. To assay the cytocompatibility and cellular behavior of the COL/SF blend nanofibrous scaffolds, cell attachment and the spreading of normal human epidermal keratinocytes (NHEK) and fibroblasts (NHEF) seeded on the scaffolds were studied. In addition, both morphological changes and cellular responses of COL/SF blend nanofibrous matrices were also compared with COL/SF hybrid nanofibrous matrices. Generally similar levels of cell attachment and spreading of NHEF were shown in the COL/SF blend nanofibrous matrix compared with those of the pure COL and pure SF matrices; the cellular responses of NHEK were, however, markedly decreased in the COL/SF blend nanofibrous matrix as compared to the pure matrices. In contrast, cell attachment and spreading of NHEK on the COL/SF hybrid nanofibrous matrix were significantly higher than that of the COL/SF blend nanofibrous matrix. Our results indicate that a COL/SF hybrid nanofibrous matrix may be a better candidate than a COL/SF blend nanofibrous matrix for biomedical applications such as wound dressing and scaffolds for tissue engineering.  相似文献   

4.
Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM's major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure.  相似文献   

5.
To fabricate a biomimetic nanostructured bicomponent scaffolds, two types of chitin/silk fibroin (SF) nanofibrous scaffolds (blend scaffolds and hybrid scaffolds) were prepared by electrospinning or simultaneous electrospinning of chitin/SF solutions. The chitin/SF bicomponent scaffolds were after-treated with water vapor, and their nanofibrous structures were almost maintained. From the cytocompatibility and cell behavior on the chitin/SF blend or hybrid nanofibrous scaffolds, the hybrid matrix with 25% chitin and 75% SF as well as the chitin/SF blend nanofibers could be a potential candidate for tissue engineering scaffolds.  相似文献   

6.
Recently tissue engineering has escalated much interest in biomedical and biotechnological applications. In this regard, exploration of new and suitable biomaterials is needed. Silk fibroin protein is used as one of the most preferable biomaterials for fabrication of scaffolds and several new techniques are being adopted to fabricate silk scaffolds with greater ease, efficiency and perfection. In this study, a freeze gelation technique is used for fabrication of silk fibroin protein 3D scaffolds, which is both time and energy efficient as compared to the conventional freeze drying technique. The fabricated silk fibroin freeze-gelled scaffolds are evaluated micro structurally for morphology with scanning electron microscopy which reveals relatively homogeneous pore structure and good interconnectivity. The pore sizes and porosity of these scaffolds ranges between 60-110 μm and 90-95%, respectively. Mechanical test shows that the compressive strength of the scaffolds is in the range of 20-40 kPa. The applicability to cell culture of the freeze gelled scaffolds has been examined with human keratinocytes HaCat cells which show the good cell viability and proliferation of cells after 5 days of culture suggesting the cytocompatibility. The freeze-gelled 3D scaffolds show comparable results with the conventionally prepared freeze dried 3D scaffolds. Thus, this technique may be used as an alternative method for 3D scaffolds preparation and may also be utilized for tissue engineering applications.  相似文献   

7.
Three forms of silk fibroin (SF) matrices, woven (microfiber), non-woven (nanofiber), and film form, were used to perform a conformational analysis and cell culture using normal human oral keratinocytes (NHOK). To obtain the SF microfiber (SF-M) matrix, natural grey silk was degummed, while the SF film (SF-F) and nanofiber (SF-N) matrices were prepared by casting and electrospinning the formic acid solutions of the regenerated SF, respectively. For insolubilization, as-prepared SF-F and SF-N matrices were chemically treated with an aqueous methanol solution of 50%. The conformational structures of as-prepared and chemically treated SF matrices were investigated using attenuated total reflectance infrared spectroscopy (ATR-IR) and solid-state 13C CP/MAS nuclear magnetic resonance (NMR) spectroscopy. The as-cast SF-F matrix formed a mainly β-sheet structure that was similar to the SF-M matrix, whereas the as-spun SF-N matrix had a random coil conformation as the predominant secondary structure. Conformational transitions from random coil to β-sheet of the as-spun SF-N occurred rapidly within 10 min following aqueous methanol treatment, and were confirmed by solid-state 13C NMR analysis. To assess the cytocompatibility and cells behavior on the different textures of SF, we examined the cell attachment and spreading of NHOK that was seeded onto the SF matrices, as well as the interaction between the cells and SF matrices. Our results indicate that the SF nanofiber matrix may be more preferable than SF film and SF microfiber matrices for biomedical applications, such as wound dressings and scaffolds for tissue engineering.  相似文献   

8.
Silk fibroin demonstrates great biocompatibility and is suitable for many biomedical applications, including tissue engineering and regenerative medicine. Current research focuses on manipulating the physico‐chemical properties of fibroin, and examining the effect of this manipulation on firobin's biocompatibility. Regenerated silk fibroin was modified by in vitro enzymatic phosphorylation and cast into films. Films were produced by blending, at several ratios, the phosphorylated and un‐phosphorylated fibroin solutions. Fourier transform infra‐red spectroscopy was used to determine the specific P–OH vibration peak, confirming the phosphorylation of the regenerated silk fibroin solution. Differential scanning calorimetry showed that phosphorylation altered the intra‐ and inter‐molecular interactions. Further experiments demonstrated that phosphorylation can be used to tailor the hydrophylicity/hydrophobicity ratio as well as the crystalinity of silk fibroin films. Release profiling of a model drug was highly dependent on silk modification level. Cytotoxicity assays showed that exposure to lixiviates of phosphorylated films only slightly affected cellular metabolism and proliferation, although direct contact resulted in a strong direct correlation between phosphorylation level and cell proliferation. This new method for tuning silk biomaterials to obtain specific structural and biochemical features can be adapted for a wide range of applications. Phosphorylation of silk fibroins may be applied to improve the cytocompatibility of any silk‐based device that is considered to be in contact with live animals or human tissues.  相似文献   

9.
X-ray diffraction measurements of regenerated Bombyx mori silk fibroin were carried out to determine its structural characteristic from an analysis of differential radial distribution functions (DRDFs). The temperature dependence of X-ray diffraction patterns from noncrystalline and crystal structures of regenerated silk fibroin was investigated using a high temperature furnace. Time resolved X-ray diffraction profiles were also obtained to construct kinematical models of structural changes caused by the addition of water. DRDFs, calculated from the experimental data, were compared with the DRDFs simulated on the basis of the Monte Carlo method. In order to model the noncrystalline structures, structural units were assumed to be parts of the crystalline structure of silk and those with appropriate structural defects reported previously. From the comparison of experimental and simulated DRDFs, it was determined that noncrystalline regenerated silk consisted of locally ordered atomic sheets similar to the atomic arrangement in the silk I crystal (Type-I sheets), and the final state of the structural change was noncrystalline, consisting of small crystallites, the structure of which is similar to that of silk II (Type-II crystallites). Time resolved DRDFs were also qualitatively interpreted by both the ordering of Type-I sheets and structural changes from Type-I to Type-II. The formation of the small Type-II crystallites obtained in this study was consistent with the nucleation of silk II by birefringence measurements of silk glands and the spinneret of Bombyx mori silkworm reported previously. X-ray diffraction should be a useful technique to understand the structural characteristics of noncrystalline organic materials.  相似文献   

10.
In this paper, the spinnable regenerated silk fibroin aqueous solution with high concentration was prepared and the regenerated silk fibers were obtained from the aqueous solution by two different spinning processes at ambient temperature. The orientation of these fibers was characterized by polarizing microscope. Their secondary structure was investigated by Raman spectroscopy and related mechanical properties were also measured. These data showed that shearing is an important step for increasing orientation and silk II (β-sheet) structure, and the mechanical properties of the regenerated silk fibers can also be improved by shearing.  相似文献   

11.
A novel hydroxyapatite/chitosan–silk fibroin (HA/CTS–SF) composite was prepared for bone repair and replacement by a coprecipitation method. It was revealed that the inorganic phase in the composite was carbonate-substituted HA with low crystallinity. The HA crystallites were found to be needle-like in shape with a typical size of 20–50 nm in length and around 10 nm in width. The composite exhibited a higher compressive strength than the precipitated HA without any organic source involved, which was closely related to the perfect incorporation of chitosan and SF macromolecules into the composite. The chemical interactions occurring between the mineral phase and the organic matrix were thought to improve the interfacial bonding and thus resulted in the enhanced mechanical property of the composite.  相似文献   

12.
Silk fibroin (SF) nanofiber scaffold containing microalgae Spirulina extract were prepared by electrospinning and the performance and functionality of the scaffold were evaluated. The viscosity and conductivity of the dope solution of Spirulina containing SF were examined for electrospinability and we found that the morphological structure of SF nanofiber is affected by the concentration of Spirulina extract added. The platelet adhesion and coagulation time test confirmed that the Spirulina containing SF nanofiber scaffold had excellent ability to prevent blood clotting or antithrombogenicity that is comparable to heparin. Low cytotoxicity and excellent cell adhesion and proliferation were also observed for Sprulina containing SF nanofiber scaffold by methylthiazolyldiphenyl‐tetrazolium bromide assay and confocal fluorescence microscope using fibroblast and human umbilical vein endothelial cells. Based on these results, we believe SF nanofiber scaffold containing Spirulina extract has the potential to be used as tissue engineering scaffold that requires high hemocompatibility. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 307–318, 2014.  相似文献   

13.
Antheraea pernyi silk fibroin fibers were dissolved by aqueous lithium thiocyanate to obtain regenerated A. pernyi silk fibroin solution. By means of circular dichroism, 13C NMR and Raman spectroscopy, the molecular conformation of regenerated A. pernyi silk fibroin in aqueous solution was investigated. The relationship of environmental factors and sol–gel transformation behavior of regenerated A. pernyi silk fibroin was also studied. The molecular conformations of regenerated A. pernyi silk fibroin mainly were -helix and random coil in solution. There also existed a little β-sheet conformation. It was obviously different with Bombyx mori silk fibroin, whose molecular conformation in solution was only random coil but no -helix existence. With the increase of temperature and solution concentration and with the decrease of solution pH value, the gelation velocity of regenerated A. pernyi silk fibroin solution increased. Especially, it showed that A. pernyi silk fibroin was more sensitive to temperature than B. mori silk fibroin during the sol–gel transformation. The velocity increased obviously when the temperature was above 30 °C. During the sol–gel transformation, the molecular conformation of regenerated A. pernyi silk fibroin changed from random coil to β-sheet structure. The results of these studies provided important insight into the preparation of new biomaterials by silk fibroin protein.  相似文献   

14.
A novel fibrous membrane of carboxymethyl chitin (CMC)/poly(vinyl alcohol) (PVA) blend was successfully prepared by electrospinning technique. The concentration of CMC (7%) with PVA (8%) was optimized, blended in different ratios (0–100%) and electrospun to get nanofibers. Fibers were made water insoluble by chemical followed by thermal cross-linking. In vitro mineralization studies identified the ability of formation of hydroxyapatite deposits on the nanofibrous surfaces. Cytotoxicity of the nanofibrous scaffold was evaluated using human mesenchymal stem cells (hMSCs) by the MTT assays. The cell viability was not altered when these nanofibrous scaffolds were pre-washed with phosphate buffer containing saline (PBS) before seeding the cells. The SEM images also revealed that cells were able to attach and spread in the nanofibrous scaffolds. Thus our results indicate that the nanofibrous CMC/PVA scaffold supports cell adhesion/attachment and proliferation and hence this scaffold will be a promising candidate for tissue engineering applications.  相似文献   

15.
Water dispersions of TEMPO-oxidized α-chitin nanowhisker (TOChN), partially deacetylated α-chitin nanowhisker/nanofiber mixture (DEChN), HCl-hydrolyzed chitin nanowhisker (HHChN) and squid-pen β-chitin nanofiber (SQChN) were prepared, and the properties of nano-dispersions and their cast films were characterized between the four chitin nano-samples. Because SQChN has the highest aspect ratio, its 0.1% dispersion had the highest shear stress and viscosity at the same shear rate in the four chitin nano-samples, and showed gel-like behavior in the whole shear rate range from 10−3 to 103 s−1. AFM images of the self-standing films showed that film surfaces consisted of characteristic chitin nano-elements with different morphologies and degrees of orientation between the four chitin samples, whereas all chitin nanowhisker/nanofiber films had similar thermal degradation points at ∼200 °C. The DEChN film had the highest tensile strength of ∼140 MPa, elongation at break of ∼10% and light-transmittance of 87% at 400 nm. In contrast, the SQChN film had the lowest tensile strength, Young's modulus and light-transmittance. All chitin nanowhisker/nanofiber films had similar oxygen permeabilities of ∼1 mL μm m−2 day−1 kPa−1, which was clearly lower than that (184 mL μm m−2 day−1 kPa−1) of a poly(lactic acid) film.  相似文献   

16.
17.
以小鼠胚胎干细胞(ES)为种子细胞,使用改良的4-/4+ RA方案,诱导小鼠ES细胞在丝素材料上向神经细胞分化,探讨丝素材料对其生长、黏附、分化等情况的影响。将小鼠ES细胞悬浮培养4 d得到的拟胚体(EBs)分别接种到经丝素膜和明胶包被的培养皿上进行诱导,比较不同材料上EBs的贴壁率及向神经元分化的比率。结果表明EBs在明胶和柞蚕丝素蛋白膜(TSF)上贴壁较快,平均贴壁率为90.3%和84.4%,在桑蚕丝素蛋白膜(SF)上贴壁较慢,贴壁率低,仅为38.5%,同时三者神经元的分化比率均能达到40%以上,无明显差异。通过以上实验,我们得出,TSF有望成为小鼠ES细胞向神经细胞分化的支架材料。  相似文献   

18.
为了进一步提高伤口敷料的止血性能,文中在生物相容性良好的壳聚糖溶液中引入含有多种生长因子的人源性富血小板血浆(Humanplatelet-richplasma,hPRP),并加入不同体积比例(1∶1、1∶3、3∶1、1∶0)的丝素蛋白溶液以提高材料的多孔性与止血性,通过冷冻干燥法制备不同配比的hPRP-壳聚糖/丝素蛋白敷料,并将纯壳聚糖敷料作为对照组,研究hPRP和丝素蛋白对敷料的止血性能的影响以及丝素蛋白对PRP中生长因子控制释放的影响。结果表明,在壳聚糖敷料中引入hPRP对敷料的止血性有所提高,但对敷料的多孔结构及吸水率无明显改善,若在hPRP-壳聚糖溶液中按照体积比为1∶1的比例加入丝素蛋白溶液,会得到具有较为均匀的多孔结构的敷料,敷料的孔隙率与吸水率分别可达到86.83%±3.84%与1 474%±114%,且该比例的敷料在快速止血性能上表现优异。此外,加入丝素蛋白与壳聚糖比例为1∶1的PRP敷料能有效减少PRP中生长因子在初始阶段的爆裂释放。因此,含hPRP的壳聚糖/丝素蛋白复合敷料有望成为一种能快速止血且能促进伤口愈合的新型伤口敷料。  相似文献   

19.
In this study, the electrospun silk fibroin nanofibrous scaffolds were modified with heparin by grafting after plasma treatment and blending electrospinning. Morphology, microstructure, chemical composition and grafting efficiency of the heparin-modified silk fibroin nanofibrous scaffolds were characterized to evaluate the effect of modification by means of scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectrometer (XPS). The results showed that the heparin was successfully introduced to the silk fibroin nanofibrous scaffolds by both the two kinds of modification, and there was a hydrogen bonding between the silk fibroin and heparin. Moreover, the hydrophilicity, O-containing groups and negative charge density of the heparin-modified scaffolds were enhanced. In vitro coagulation time tests showed that the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) of the heparin-modified scaffolds were much higher than those of the pure silk fibroin scaffolds. L929 fibroblasts and EVCs spread and proliferated better on the heparin-modified scaffolds than on the pure silk fibroin scaffolds. Macrophages, neutrophils and lymphocytes were not observed in the heparin-modified scaffolds, which indicated that the modified scaffolds could induce minor inflammation in vivo. The results indicated that the electrospun heparin-modified silk fibroin nanofibrous scaffolds could be considered as ideal candidates for tissue engineering scaffolds.  相似文献   

20.
Chitin nanofibrils are prepared by treatment of commercial chitin in hydrochloric acid. It is found for the first time that the obtained chitin nanofibrils can be well dispersed in an organic solvent of 2,2,2-trifluoroethanol (TFE) due to its strong ability to form hydrogen bonds. Polycaprolactone (PCL), a water insoluble biodegradable polymer, is selected to blend with chitin nanofibrils to achieve chitin nanofibril/polycaprolactone (n-chitin/PCL) nanocomposites using TFE as a co-solvent. The results show the n-chitin/PCL nanocomposites, either in the form of solvent-cast films or electrospun fiber mats, both exhibit reinforced mechanical properties. Thus, the processing technique from a TFE suspension instead of aqueous suspensions is a good alternative to broaden the family of chitin nanofibril-based nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号