共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Iijima N Kawakita M Yamazaki 《Biochemical and biophysical research communications》1980,93(3):912-918
Glucagon addition to isolated rat hepatocytes increases the level of Cyclic AMP inside the cells and the activity of the enzyme phenylalanine hydroxylase. These effects of glucagon are time and dose dependent and are detectable at hormone concentration as low as 0.02nM. The glucagon concentrations causing half-maximal increases in Cyclic AMP production and phenylalanine hydroxylase activity are 0.2nM and 0.1 nM respectively. When hepatocytes are incubated with norepinephrine or the ionophore A23187, at concentrations between 1 nM and 10 μM, a slight increase in enzyme activity is seen only at the highest dose of either drug. The effect of norepinephrine can be completely antagonized by 20 μM propranolol but not by 20 μM ergocryptine. These results suggest that the activity of phenylalanine hydroxylase can be hormonally regulated, , through a phosphorylation mechanism catalyzed by a Cyclic AMP-dependent protein kinase. 相似文献
2.
3.
15-hydroxyprostaglandin dehydrogenase. A review. 总被引:10,自引:0,他引:10
H S Hansen 《Prostaglandins》1976,12(4):647-679
4.
15-Hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes NAD(+)-dependent oxidation of 15(S)-hydroxyl group of prostaglandins and has been considered a key enzyme involved in biological inactivation of prostaglandins. This enzyme is markedly induced by androgens in hormone-sensitive human prostate cancer cells (Tong M., Tai H. H. Biochem Biophys Res Commun 2000; 276: 77-81) and may be involved in tumorigenesis. Inhibition of this enzyme may be of value in anticancer therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) which inhibit cyclooxygenases (COXs) have been shown to be chemopreventive in epidemiological and animal-model studies. However, chemoprevention by these drugs may not be directly related to their inhibition of COXs. Other targets may be also involved in their chemopreventive activity. We have examined a variety of NSAIDs including COX-2 selective inhibitors, peroxisome proliferator-activated receptor (PPAR) gamma agonists and phytophenolic compounds which have been shown to be chemopreventive for their effect on 15-PGDH. It was found that most of these compounds were potent inhibitors of 15-PGDH. Among these compounds, ciglitazone appeared to be the most powerful inhibitor (IC(50)=2.7 microM). Inhibition by ciglitazone was non-competitive with respect to NAD(+) and uncompetitive with respect to PGE(2). 相似文献
5.
The NAD+-linked 15-hydroxyprostaglandin dehydrogenase (PGDH) of swine lung was purified to a high specific activity by affinity chromatographies on prostaglandin (PG)-and NAD+-Sepharose. The affinities of the enzyme for various synthetic analogues of PGA, E, F, and I and their inhibitory effects on the enzymatic reaction were examined. The modification of the alkyl side chain of PG, particularly at C-15 or C-16, reduced the affinity of the enzyme for these PG analogues. Furthermore, 14-methyl-13,14-dihydro-PGE1 and 16-cyclopentyl-omega-trinor-15-epi-PGE2 were potent inhibitors of PGDH. 相似文献
6.
15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes NAD(+)-linked oxidation of 15 (S)-hydroxyl group of prostaglandins and lipoxins and is the key enzyme responsible for the biological inactivation of these eicosanoids. The enzyme was found to be under-expressed as opposed to cyclooxygenase-2 (COX-2) being over-expressed in lung and other tumors. A549 human lung adenocarcinoma cells were used as a model system to study the role of 15-PGDH in lung tumorigenesis. Up-regulation of COX-2 expression by pro-inflammatory cytokines in A549 cells was accompanied by a down-regulation of 15-PGDH expression. Over-expression of COX-2 but not COX-1 by adenoviral-mediated approach also attenuated 15-PGDH expression. Similarly, over-expression of 15-PGDH by the same strategy inhibited IL-1beta-induced COX-2 expression. It appears that the expression of COX-2 and 15-PGDH is regulated reciprocally. Adenoviral-mediated transient over-expression of 15-PGDH in A549 cells resulted in apoptosis. Xenograft studies in nude mice also showed tumor suppression with cells transiently over-expressing 15-PGDH. However, cells stably over-expressing 15-PGDH generated tumors faster than those control cells. Examination of different clones of A549 cells stably expressing different levels of 15-PGDH indicated that the levels of 15-PGDH expression correlated positively with those of mesenchymal markers, and negatively with those of epithelial markers. It appears that the stable expression of 15-PGDH induces epithelial-mesenchymal transition (EMT) which may account for the tumor promotion in xenograft studies. A number of anti-cancer agents, such as transforming growth factor-beta1 (TGF-beta1), glucocorticoids and some histone deacetylase inhibitors were found to induce 15-PGDH expression. These results suggest that tumor suppressive action of these agents may, in part, be related to their ability to induce 15-PGDH expression. 相似文献
7.
8.
M.Linette Casey David L. Hemsell Paul C. MacDonald John M. Johnston 《Prostaglandins & other lipid mediators》1980,19(1):115-122
The specific activity of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase was measured in human endometrial tissue obtained from ovulatory and anovulatory women. Employing PGE2 as substrate, the specific activity of this enzyme was found to be highest in endometrial tissue during the secretory phase of the cycle (ovarian cycle days 15–25) and lowest in menstrual (days 1–5) and premenstrual (days 26–28) endometrium. The specific activity of prostaglandin dehydrogenase in endometrium of anovulatory women was low, being similar to that found in proliferative endometrium (days 6–14) of ovulatory women. Prostaglandin dehydrogenase activity was found in the cytosolic fraction prepared from endometrial tissue, and was found principally in the glandular epithelium following separation of endometrial glands and stromal cells. 相似文献
9.
Rat kidney NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was measured in zones and substructure of the rat kidney nephron. This was accomplished utilizing an assay procedure based upon determining the amount of prostaglandin E1 present before and after the reaction with the 15-hydroxyprostaglandin dehydrogenase contained in the tissue sample. The enzyme activity was assayed in freeze dried, quick frozen rat kidney sections and its distribution within the rat kidney was determined. In kidney zones, it was localized to medullary rays and inner cortex. In kidney substructure, activity was highest in collecting tubule, pars recti tubule, distal convoluted tubule and the ascending limb of Henle (14.2, 11.5, 6.4 and 9.2 mM kg-1hr-1, respectively). Activity in glomeruli, proximal convoluted tubule and small arteries was lower (2.1, 2.8 and 2.1 mM kg-1hr-1, respectively). The assay procedure was verified by established assays (spectrophotometric, fluorometric and radiometric TLC) which are often used in homogenate and purified PGDH preparations. 相似文献
10.
Homogenates of several mammalian tissues were measured by radioimmunoassay for 15-hydroxyprostaglandin dehydrogenase activity. Two types of enzyme activity were detected. One, which used NAD-plus as cofactor much more effectively than NADP-lus, was found in monkey lung, heart, liver, kidney, and spleen and in chicken heart and dog lung. A second type, which uses NADP-plus as a cofactor more effectively than NAD-plus, was found in monkey and human brain and red blood cells and in swine kidney. These two types of 15-hydroxyprostaglandin dehydrogenase were partially purified from monkey brain and chicken heart. In addition to different cofactor requirements, the two partially purified enzymes could be distinguished by chromatographic properties, their relative affinities for prostaglandin I2 and F2alpha, and their sensitivities to inhibition by reduced pyridine nucleotides, thyroid hormones, and prostaglandin B2. 相似文献
11.
Labile oligomeric structure of human placental 15-hydroxyprostaglandin dehydrogenase 总被引:1,自引:0,他引:1
T Tanaka T Kotani S Ohtaki K Nagai K Tsuruta N Mori 《Biochemical and biophysical research communications》1986,135(3):1058-1063
NAD-dependent 15-hydroxyprostaglandin dehydrogenase has been isolated from human term placenta. About 9,000-fold enrichment was achieved with a yield of 7.6%. Electrophoretic analyses suggested that glycerol stabilized an active structure of the enzyme, and sodium dodecyl sulfate might dissociate it. The instability of the enzyme activity may relate to its labile oligomeric structure which is easily dissociated into subunits. 相似文献
12.
Kinetic studies have shown that the reaction catalyzed by the human placental 15-hydroxyprostaglandin dehydrogenase proceeds by a single displacement mechanism. Addition of the reactants is ordered with NAD+ binding first. The lifetime of the ternary complex is affected by the pH of the reaction mixture. At pH 7.0 a kinetically significant ternary complex is formed, while at pH 9.0 the ternary complex is not kinetically significant (Theorell-Chance mechanism). There is evidence for the occurrence of a kinetically significant isomerization of the enzyme · NADH complex at pH 9.0 but not at pH 7.0. At high substrate concentrations there is formation of unreactive complexes between the 15-hydroxyrostaglandin and both the free enzyme and enzyme · NADH complex and between the 15-ketoprostaglandin and both the free enzyme and enzyme · NAD+ complex. The inhibition of the 15-hydroxyprostaglandin dehydrogenase by various prostaglandins and prostaglandin analogs may be explained by the formation of similar unreactive complexes. Certain prostaglandin analogs, arachidonic acid, and ethacrynic acid also affect the activity of the enzyme by causing its irreversible inactivation. 相似文献
13.
Purification of the human placental NAD-linked 15-hydroxyprostaglandin dehydrogenase 总被引:1,自引:0,他引:1
An NAD-linked 15-hydroxyprostaglandin dehydrogenase has been purified 13,100-fold from human placental tissue. The specific activity of the purified enzyme ranges from 6900 to 8300 mU/mg protein depending on the method used to determine the protein concentration. On discontinuous electrophoresis in sodium dodecyl sulfate more than 95% of the protein migrates as a single band; its estimated molecular weight is 25.5-26.0 kDa. This is half the value obtained when the molecular weight is estimated under non-denaturing conditions and suggests that the enzyme is composed of two identical or nearly identical subunits. 相似文献
14.
An NAD-linked 15-hydroxyprostaglandin dehydrogenase has been purified 13, 100-fold from human placental tissue. The specific activity of the purified enzyme ranges from 6900 to 8300 mU/mg protein depending on the method used to determine the protein concentration. On discontinous electrophoresis in sodium dodecyl sulfate more than 95% of the protein migrates as a single band; its estimated molecular weight is 25.5–26.0 kDa. This is half the value obtained when the molecular weight is estimated under non-denaturing conditions and suggests that the enzyme is composed of two identical or nearly identical subunits. 相似文献
15.
16.
An endogenous inhibitor of the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase was isolated from the 105,000 X g supernatant fraction of lungs of pregnant rabbits following DEAE chromatography. The material was heat stable and was resistant to pronase treatment. The inhibitor contained a mixture of saturated and mono-unsaturated fatty acids and cholesterol with palmitate and oleate representing the major fatty acids in the inhibitory factor. The factor inhibited prostaglandin dehydrogenase activity but had only minor effects on the activity of NAD+-dependent alcohol and lactate dehydrogenases or the NADP+-dependent isocitrate dehydrogenase. In an attempt to develop a greater understanding of the inhibitory action of fatty acids on prostaglandin dehydrogenase activity, a variety of standard fatty acids were examined for their ability to decrease enzymic activity. Oleate and palmitate inhibited enzymic activity by 70% at 10 microM, whereas arachidonate and myristate were only 30% inhibitory at this concentration. A comparison among the 18-carbon-containing fatty acids demonstrated that oleate was more potent than linoleate and linolenate in inhibiting prostaglandin dehydrogenase activity. The coenzyme A derivatives of oleate, linoleate and linolenate were less inhibitory than the free fatty acids. 相似文献
17.
C L Hsin-Hsiung-TaiTai C S Hollander 《Biochemical and biophysical research communications》1974,57(2):457-462
15-Hydroxyprostaglandin dehydrogenase has been purified from swine kidney to a specific activity of near 100 miliunits per mg of protein. The purified enzyme was found to be inhibited by thyroid hormone analogues of which triiodothyroacetic acid was the most potent inhibitor. The concentration required for 50% inhibition was 5 μM for triiodothyroacetic acid. The inhibition by thyroid hormones was uncompetitive and non-competitive with regard to NAD+ and prostaglandin E1, respectively. The sensitivity of this enzyme to thyroid hormones suggests that these hormones may regulate the metabolism of prostaglandins . 相似文献
18.
Patrick Y-K. Wong John C. McGiff 《Biochimica et Biophysica Acta (BBA)/General Subjects》1977,500(2):436-439
Two types of 15-hydroxyprostaglandin dehydrogenase (NAD+ and NADP+ dependent) were demonstrated in bovine mesentric arteries and veins. The 15-hydroxyprostaglandin dehydrogenase activity was found in the high-speed supernatant, suggesting that these enzymes are associated with the cytoplasmic fraction of the blood vessels. The levels of activities of both NAD+- and NADP+-dependent dehydrogenases were similar in mesentric blood vessels. Prostaglandin F2α was preferred to the prostaglandin E2 as subtrate by both NAD+ and NADP+ dependent enzymes. The presence of 15-hydroxyprostaglandin dehydrogenase in blood vessels may play a siginificant role in the regulation of intracellular levels of prostaglandins of the E and F series in blood vessels. 相似文献
19.
A simple, rapid, and sensitive spectrofluorometric assay for 15-hydroxyprostaglandin dehydrogenase activity was developed in which the rate of production of NADH was monitored. The cytosolic fraction prepared from human placental tissue was employed as the enzyme source. The assay was conducted at pH 9.5 since 15-ketoprostaglandin Δ13-reductase and NADH oxidase activities were inhibited at this pH, thereby minimizing the interference of the reactions catalyzed by these enzymes in the assay of prostaglandin dehydrogenase activity. 相似文献
20.
NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a member of the short-chain dehydrogenase/reductase (SDR) family, catalyzes the first step in the catabolic pathways of prostaglandins and lipoxins, and is believed to be the key enzyme responsible for the biological inactivation of these biologically potent eicosanoids. The enzyme utilizes NAD(+) specifically as a coenzyme. Potential amino acid residues involved in binding NAD(+) and facilitating enzyme catalysis have been partially identified. In this report, we propose that three more residues in 15-PGDH, Ile-17, Asn-91, and Val-186, are also involved in the interaction with NAD(+). Site-directed mutagenesis was used to examine their roles in binding NAD(+). Several mutants (I17A, I17V, I17L, I17E, I17K, N91A, N91D, N91K, V186A, V186I, V186D, and V186K) were prepared, expressed as glutathione S-transferase (GST) fusion enzymes in Escherichia coli, and purified by GSH-agarose affinity chromatography. Mutants I17E, I17K, N91L, N91K, and V186D were found to be inactive. Mutants N91A, N91D, V186A, and V186K exhibited comparable activities to the wild type enzyme. However, mutants I17A, I17V, I17L, and V186I had higher activity than the wild type. Especially, the activities of I17L and V186I were increased nearly 4- and 5-fold, respectively. The k(cat)/K(m) ratios of all active mutants for PGE(2) were similar to that of the wild type enzyme. However, the k(cat)/K(m) ratios of mutants I17A and N91A for NAD(+) were decreased 5- and 10-fold, respectively, whereas the k(cat)/K(m) ratios of mutants I17V, N91D, V186I, and V186K for NAD(+) were comparable to that of the wild type enzyme. The k(cat)/K(m) ratios of mutants I17L and V186A for NAD(+) were increased over nearly 2-fold. These results suggest that Ile-17, Asn-91, and Val-186 are involved in the interaction with NAD(+) and contribute to the full catalytic activity of 15-PGDH. 相似文献