首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to compare voluntary and stimulated exercise for changes in muscle strength, growth hormone (GH), blood lactate, and markers of muscle damage. Nine healthy men had two leg press exercise bouts separated by 2 wk. In the first bout, the quadriceps muscles were stimulated by biphasic rectangular pulses (75 Hz, duration 400 mus, on-off ratio 6.25-20 s) with current amplitude being consistently increased throughout 40 contractions at maximal tolerable level. In the second bout, 40 voluntary isometric contractions were performed at the same leg press force output as the first bout. Maximal voluntary isometric strength was measured before and after the bouts, and serum GH and blood lactate concentrations were measured before, during, and after exercise. Serum creatine kinase (CK) activity and muscle soreness were assessed before, immediately after, and 24, 48, and 72 h after exercise. Maximal voluntary strength decreased significantly (P < 0.05) after both bouts, but the magnitude of the decrease was significantly (P < 0.05) greater for the stimulated contractions (-22%) compared with the voluntary contractions (-9%). Increases in serum GH and lactate concentrations were significantly (P < 0.05) larger after the stimulation compared with the voluntary exercise. Increases in serum CK activity and muscle soreness were also significantly (P < 0.05) greater for the stimulation than voluntary exercise. It was concluded that a single bout of electrical stimulation exercise resulted in greater GH response and muscle damage than voluntary exercise.  相似文献   

2.
Eccentrically biased exercise results in skeletal muscle damage and stimulates adaptations in muscle, whereby indexes of damage are attenuated when the exercise is repeated. We hypothesized that changes in ultrastructural damage, inflammatory cell infiltration, and markers of proteolysis in skeletal muscle would come about as a result of repeated eccentric exercise and that gender may affect this adaptive response. Untrained male (n = 8) and female (n = 8) subjects performed two bouts (bout 1 and bout 2), separated by 5.5 wk, of 36 repetitions of unilateral, eccentric leg press and 100 repetitions of unilateral, eccentric knee extension exercises (at 120% of their concentric single repetition maximum), the subjects' contralateral nonexercised leg served as a control (rest). Biopsies were taken from the vastus lateralis from each leg 24 h postexercise. After bout 2, the postexercise force deficit and the rise in serum creatine kinase (CK) activity were attenuated. Women had lower serum CK activity compared with men at all times (P < 0.05), but there were no gender differences in the relative magnitude of the force deficit. Muscle Z-disk streaming, quantified by using light microscopy, was elevated vs. rest only after bout 1 (P < 0.05), with no gender difference. Muscle neutrophil counts were significantly greater in women 24 h after bout 2 vs. rest and bout 1 (P < 0.05) but were unchanged in men. Muscle macrophages were elevated in men and women after bout 1 and bout 2 (P < 0.05). Muscle protein content of the regulatory calpain subunit remained unchanged whereas ubiquitin-conjugated protein content was increased after both bouts (P < 0.05), with a greater increase after bout 2. We conclude that adaptations to eccentric exercise are associated with attenuated serum CK activity and, potentially, an increase in the activity of the ubiquitin proteosome proteolytic pathway.  相似文献   

3.
Although the exact mechanisms are still unclear, it is commonly acknowledged that acute eccentric exercise alters muscle performance, whereas the repetition of successive bouts leads to the disappearance of the deleterious signs. To clarify this issue, we measured blood creatine kinase and lactate dehydrogenase activities and proton transverse relaxation time (T2) in various leg muscles 72 h after single and repeated bouts of exhausting downhill running sessions (-15 degrees , 1.5 km/h) with either 4 or 7 days elapsed between bouts. After a single exercise bout, T2 and enzyme activities initially increased and recovered rapidly. When exercise bouts were repeated over a short time period (4 days), initial changes did not recover and endurance time throughout additional exercise sessions was significantly reduced. On the contrary, with a longer resting time between exercises (7 days), the endurance time of additional running sessions was significantly longer and muscle changes (T2 increase, muscle edema, and enzyme activity changes) slowly and completely reversed. Significant correlations were found between T2 changes and enzyme activities. T2 changes in the soleus and gastrocnemius muscle heads were differently affected by lengthening contractions, suggesting a muscle specificity and indicating that muscle alterations might be linked to different anatomical properties, such as fiber pennation angles, typology, and/or the exhausting nature of the downhill running sessions. We documented a "less muscle injury" effect due to the repetition of exercise bouts at a low frequency (i.e., 1 session per week) in accordance with the delayed muscle inflammation. This effect was not observed when the between-exercise resting time was shorter.  相似文献   

4.
This study monitored plasma and skeletal muscle markers of free-radical-mediated damage following maximum eccentric and concentric exercise, to examine the potential role of free radicals in exercise-induced muscle damage. Fourteen male volunteers performed either (1) a bout of 70 maximum eccentric and a bout of 70 maximum concentric muscle actions of the forearm flexors (the bouts being separated by 4 weeks; n = 8) or (2) a bout of 80 maximum eccentric and a bout of 80 maximum concentric muscle actions of the knee extensors (the bouts being separated by 1 week; n=6). Plasma markers of lipid peroxidation, thiobarbituric acid-reactive substances (TBARS) and diene-conjugated compounds (DCC) were monitored in the arm protocol and skeletal muscle markers of oxidative lipid and protein damage, malondialdehyde (MDA) and protein carbonyl derivatives (PCD) respectively, were monitored in the leg protocol. In both protocols, the contralateral limb was used for the second bout and the order of the bouts was randomised between limbs. Repeated measures ANOVA indicated significant changes from baseline following eccentric arm work on the measures of serum creatine kinase activity (P < 0.05), maximum voluntary torque production (P < 0.01) and relaxed arm angle (P < 0.01). Subjective muscle soreness peaked 2 days after eccentric arm work (P < 0.05, Wilcoxon test). However, there were no changes in the plasma levels of TBARS or DCC following the eccentric or concentric arm exercise. Immediately after concentric leg exercise, skeletal muscle PCD concentrations was significantly higher than that observed immediately after eccentric work (P < 0.05). However, no significant difference between the eccentric and concentric knee extensor bouts was observed on the measure of skeletal muscle MDA concentration. The results of this study offer no support for the involvement of oxygen free radicals in exercise-induced muscle damage.  相似文献   

5.
The purposes of this study were, first, to clarify the long-term pattern of T2 relaxation times and muscle volume changes in human skeletal muscle after intense eccentric exercise and, second, to determine whether the T2 response exhibits an adaptation to repeated bouts. Six young adult men performed two bouts of eccentric biceps curls (5 sets of 10 at 110% of the 1-repetition concentric maximum) separated by 8 wk. Blood samples, soreness ratings, and T2-weighted axial fast spin-echo magnetic resonance images of the upper arm were obtained immediately before and after each bout; at 1, 2, 4, 7, 14, 21, and 56 days after bout 1; and at 2, 4, 7 and 14 days after bout 2. Resting muscle T2 [27.6 +/- 0.2 (SE) ms] increased immediately postexercise by 8 +/- 1 ms after both bouts. T2 peaked 7 days after bout 1 at 47 +/- 4 ms and remained elevated by 2.5 ms at 56 days. T2 peaked lower (37 +/- 4 ms) and earlier (2-4 days) after bout 2, suggesting an adaptation of the T2 response. Peak serum creatine kinase values, pain ratings, and flexor muscle swelling were also significantly lower after the second bout (P < 0.05). Total volume of the imaged arm region increased transiently after bout 1 but returned to preexercise values within 2 wk. The exercised flexor compartment swelled by over 40%, but after 2 wk it reverted to a volume 10% smaller than that before exercise and maintained this volume loss through 8 wk, consistent with partial or total destruction of a small subpopulation of muscle fibers.  相似文献   

6.
The relationships between muscle glycogenolysis, glycolysis, and H+ concentration were examined in eight subjects performing three 30-s bouts of maximal isokinetic cycling at 100 rpm. Bouts were separated by 4 min of rest, and muscle biopsies were obtained before and after bouts 2 and 3. Total work decreased from 20.5 +/- 0.7 kJ in bout 1 to 16.1 +/- 0.7 and 13.2 +/- 0.6 kJ in bouts 2 and 3. Glycogenolysis was 47.2 and 15.1 mmol glucosyl U/kg dry muscle during bouts 2 and 3, respectively. Lower accumulations of pathway intermediates in bout 3 confirmed a reduced glycolytic flux. In bout 3, the work done represented 82% of the work in bout 2, whereas glycogenolysis was only 32% of that in bout 2. Decreases in ATP and phosphocreatine contents were similar in the two bouts. Muscle [H+] increased from 195 +/- 12 to 274 +/- 19 nmol/l during bout 2, recovered to 226 +/- 8 nmol/l before bout 3, and increased to 315 +/- 24 nmol/l during bout 3. Muscle [H+] could not be predicted from lactate content, suggesting that ion fluxes are important in [H+] regulation in this exercise model. Low glycogenolysis in bout 3 may be due to an inhibitory effect of increased [H+] on glycogen phosphorylase activity. Alternately, reduced Ca2+ activation of fast-twitch fibers (including a possible H+ effect) may contribute to the low overall glycogenolysis. Total work in bout 3 is maintained by a greater reliance on slow-twitch fibers and oxidative metabolism.  相似文献   

7.
This study compared the fat metabolism between "a single bout of prolonged exercise" and "repeated bouts of exercise" of equivalent exercise intensity and total exercise duration. Seven men performed three trials: 1) a single bout of 60-min exercise (Single); 2) two bouts of 30-min exercise, separated by a 20-min rest between exercise bouts (Repeated); and 3) rest. Each exercise was performed with a cycle ergometer at 60% of maximal oxygen uptake. In the Single and Repeated trials, serum glycerol, growth hormone, plasma epinephrine, and norepinephrine concentrations increased significantly (P<0.05) during the first 30-min exercise bout. In the Repeated trial, serum free fatty acids (FFA), acetoacetate, and 3-hydroxybutyrate concentrations showed rapid increases (P<0.05) during a subsequent 20-min rest period. During the second 30-min exercise bout, FFA and epinephrine responses were significantly greater in the Repeated trial than in the Single trial (P<0.05). Moreover, the Repeated trial showed significantly lower values of insulin and glucose than the Single trial. During the 60-min recovery period after the exercise, FFA, glycerol, and 3-hydroxybutyrate concentrations were significantly higher in the Repeated trial than in the Single trial (P<0.05). The relative contribution of fat oxidation to the energy expenditure showed significantly higher values (P<0.05) in the Repeated trial than in the Single trial during the recovery period. These results indicate that repeated bouts of exercise cause enhanced fat metabolism compared with a single bout of prolonged exercise of equivalent total exercise duration.  相似文献   

8.
The purpose of this study was to compare symptoms of exercise-induced muscle damage after an initial and repeated bout of plyometric exercise in men and boys. Ten boys (9-10 yr) and 10 men (20-29 yr) completed two bouts of eight sets of 10 plyometric jumps, 2 wk apart. Perceived soreness (0-10, visual analog scale), isometric strength of the quadriceps at six knee flexion angles, and countermovement jump and squat jump height were assessed before and at 30 min, 24 h, 48 h, and 72 h after each bout. All variables followed the expected patterns of change in men, with soreness peaking at 24-48 h (5.8 +/- 1.7) and decrements in muscle function peaking at 30 min after the first bout (73-85% of baseline scores). Symptoms remained for 72 h after the first bout in men. In boys, symptoms were much less severe and peaked at 30 min (visual analog scale = 2.1 +/- 1.8, functional decrements 87-92% of baseline) and, with the exception of soreness, returned to baseline after 24 h. After the second bout of plyometric exercise, the level of soreness and decrements in countermovement jump, squat jump, and isometric strength were lower, although the effect was stronger in men, in all cases. The results of this study suggest that although children may experience symptoms of muscle damage after intensive plyometric exercise, they are much less severe. A prior bout of plyometric exercise also appears to provide children with some protection from soreness after a subsequent bout of plyometric exercise. Explanations for milder symptoms of exercise-induced muscle damage in children include greater flexibility leading to less overextension of sarcomeres during eccentric exercise, fewer fast-twitch muscle fibers, and greater and perhaps more varied habitual physical activity patterns.  相似文献   

9.
The aim of this study was to test the hypothesis that the repeated bout effect depends on intraindividual variability during a second bout of eccentric exercise. Eleven healthy men performed 2 resistance training bouts consisting of maximal eccentric exercise (EE1 and EE2) using the knee extensor muscles. The interval between the exercise bouts was 2 weeks and consisted of 10 sets of 12 repetitions at 160° · s(-1). Maximal isokinetic concentric torque at 30° · s(-1) was measured before the bouts and 2 minutes and 24 hours thereafter. Muscle soreness score and creatine kinase activity were determined before and after exercise. Intraindividual variability in torque during each eccentric repetition was measured during exercise. Repeated bout effect manifested after EE2: Muscle soreness was less, the shift in optimal knee joint angle to a longer muscle length was less, and the decrease in isokinetic concentric torque 2 minutes after exercise was less for EE2 compared with that for EE1. During concentric (isokinetic) contraction, length-dependent changes in isokinetic torque (IT) occurred after both EE1 and EE2: The shorter the muscle length, the greater the change in IT. There was a significant relationship between the decrease in maximal isokinetic knee extension torque 24 hours after EE1 and intraindividual variability of EE1 (R2 = 0.71, p < 0.05), but this relationship was not significant for EE2 (R2 = 0.18). It seems that intraindividual variability during eccentric exercise protects against muscle fatigue and damage during the first exercise bout but not during a repeat bout. These findings may be useful to coaches who wish to improve muscle function in resistance training with less depression in muscle function and discomfort of their athletes, specifically, when muscle is most sensitive to muscle-damaging exercise.  相似文献   

10.
Control of adaptations in protein levels in response to exercise   总被引:1,自引:0,他引:1  
The nature of the contractile stimuli to which a skeletal muscle is subjected determines which proteins will increase in skeletal muscle. Rates of muscle protein synthesis decrease during an exercise bout for durations of less than 30 min. Synthesis has been reported to increase, remain unchanged, or decrease during exercise bouts lasting from 30 min to 7 h. Protein synthesis rates apparently increase when exercise exceeds 7 h. After short bouts of exercise, protein synthesis rates in muscles appear to decrease in the first hour after exercise, but in the second hour after exercise increase to levels greater than normal. We hypothesize that decreases in ATP and pH levels in muscle during contractile activity may dampen a calcium-mediated stimulation of translation of RNA. That the content of alpha-actin mRNA in muscles of immobilized limbs is unchanged when actin synthesis initially decreases suggests that a decrease in the translation of alpha-actin mRNA is the facilitating step in the decrease in actin synthesis. Rates of muscle protein degradation decrease during exercise if exercise duration is less than 12 h, but increase when exercise is continuous for a day. After intense exercise, rates of protein degradation in skeletal muscle may be increased. An increased ratio of NAD(P)H:NAD(P) in muscle during short-term exercise may decrease degradation. Increased lysosomal enzyme activity in muscle occurs during the postexercise period.  相似文献   

11.
Berg U  Bang P 《Hormone research》2004,62(Z1):50-58
Determinations of serum concentrations of total insulin-like growth factor I (tIGF-I) are important in the diagnosis, monitoring of treatment and safety evaluation of patients with growth disorders and/or metabolic disease. It is well established that tIGF-I status varies over time. Changes in tIGF-I levels in relation to an acute bout of exercise or repeated bouts, known as training, are likely to contribute to this variation. Serum tIGF-I has also been found to be of predictive value in growth prediction models employed before the start of growth hormone (GH) treatment. Furthermore, IGF-I generation tests have been suggested to be of value in the assessment of the growth response to GH administration in patients suspected of GH deficiency with or without some degree of GH insensitivity. This is discussed elsewhere in this issue. Recent progress in our understanding of growth hormone-dependent and -independent expression of the IGF1 gene in skeletal muscle and the role of sufficient energy intake during training for muscle and liver generation of IGF-I raises important questions regarding their relative contribution to the circulating pool of IGF-I. The present review is focused on circulating levels of tIGF-I in relation to a single bout of exercise or to a period of training. In addition, the expression of IGF-I locally in muscle in response to these stimuli will be discussed.  相似文献   

12.
Eccentric exercise is known to disrupt sarcolemmal integrity and induce damage of skeletal muscle fibers. We hypothesized that L-arginine (L-Arg; nitric oxide synthase (NOS) substrate) supplementation prior to a single bout of eccentric exercise would diminish exercise-induced damage. In addition, we used N-nitro-L-arginine methyl ester hydrochloride (L-NAME; NOS inhibitor) to clarify the role of native NOS activity in the development of exercise-induced muscle damage. Rats were divided into four groups: non-treated control (C), downhill running with (RA) or without (R) L-Arg supplementation and downhill running with L-NAME supplementation (RN). Twenty four hours following eccentric exercise seven rats in each group were sacrificed and soleus muscles were dissected and frozen for further analysis. The remaining seven rats in each group were subjected to the exercise performance test. Our experiments showed that L-Arg supplementation prior to a single bout of eccentric exercise improved subsequent exercise performance capacity tests in RA rats when compared with R, RN and C rats by 37%, 27% and 13%, respectively. This outcome is mediated by L-Arg protection against post-exercise damage of sarcolemma (2.26- and 0.87-fold less than R and RN groups, respectively), reduced numbers of damaged muscle fibers indicated by the reduced loss of desmin content in the muscle (15% and 25% less than R and RN groups, respectively), and diminished µ-calpain mRNA up-regulation (42% and 30% less than R and RN groups, respectively). In conclusion, our study indicates that L-Arg supplementation prior to a single bout of eccentric exercise alleviates muscle fiber damage and preserves exercise performance capacity.  相似文献   

13.
Delayed onset muscle soreness following repeated bouts of downhill running   总被引:7,自引:0,他引:7  
Perceived muscle soreness ratings, serum creatine kinase (CK) activity, and myoglobin levels were assessed in three groups of subjects following two 30-min exercise bouts of downhill running (-10 degrees slope). The two bouts were separated by 3, 6, and 9 wk for groups 1, 2, and 3, respectively. Criterion measures were obtained pre- and 6, 18, and 42 h postexercise. On bout 1 the three groups reported maximal soreness at 42 h postexercise. Also, relative increases in CK for groups 1, 2, and 3 were 340, 272, and 286%, respectively. Corresponding values for myoglobin were 432, 749, and 407%. When the same exercise was repeated, significantly less soreness was reported and smaller increases in CK and myoglobin were found for groups 1 and 2. For example, the percent CK increases on bout 2 for groups 1 and 2 were 63 and 62, respectively. Group 3 demonstrated no significant difference in soreness ratings, CK activities, or myoglobin levels between bouts 1 and 2. It was concluded that performance of a single exercise bout had a prophylactic effect on the generation of muscle soreness and serum protein responses that lasts up to 6 wk.  相似文献   

14.
This study examined whether performing repeated bouts of eccentric exercise 2 and 4 days after an initial damaging bout would exacerbate muscle damage. One arm performed 3 sets of 10 eccentric actions of the elbow flexors (ECC1) using a dumbbell set at 50% of the maximal isometric force at 90 degrees (SINGLE). Two weeks later the same exercise was performed by the opposite arm with the exception that subsequent bouts were performed 2 (ECC2) and 4 (ECC3) days after ECC1 (REPEATED). In the REPEATED condition, maximal isometric force (MIF) decreased to the same level immediately after ECC1-3, and the decreases in range of motion (ROM) and increases in upper arm circumference immediately postexercise were similar among the bouts. However, no significant differences in changes in MIF, ROM, muscle soreness, and plasma creatine kinase activity were evident between the SINGLE and REPEATED conditions when excluding the changes immediately after ECC2 and ECC3. These results suggest that ECC2 and ECC3 did not exacerbate muscle damage or affect the recovery process.  相似文献   

15.
16.
The effects of increased functional loading on early cellular regenerative events after exercise-induced injury in adult skeletal muscle were examined with the use of in vivo labeling of replicating myofiber nuclei and immunocyto- and histochemical techniques. Satellite cell proliferation in the soleus (Sol) of nonexercised rats (0.4 +/- 0.2% of fibers) was unchanged after an initial bout of declined treadmill exercise but was elevated after two (1.0 +/- 0.2%, P < or = 0.01), but not four or seven, daily bouts of the same task. Myonuclei produced over the 7-day period comprised 0.9-1.9% of myonuclei in isolated fibers of Sol, tibialis anterior, and vastus intermedius of nonexercised rats. The accretion of new myonuclei was enhanced (P < or = 0.05) in Sol and vastus intermedius by the initial exercise followed by normal activity (to 3.1-3.4% of myonuclei) and more so by continued daily exercise (4.2-5.3%). Observed coincident with a lower incidence of histological fiber injury and unchanged fiber diameter and myonuclei per millimeter, the greater new myonuclear accretion induced by continued muscle loading may contribute to an enhanced fiber repair and regeneration after exercise-induced injury.  相似文献   

17.
Time course of muscle adaptation after high force eccentric exercise   总被引:5,自引:0,他引:5  
The repeated bout effect on changes in muscle damage indicators was examined in two groups of subjects following two bouts of 70 maximal eccentric actions of the forearm flexors. Fourteen college age female subjects were placed into two groups. The two bouts were separated by 6 weeks (n = 6), and 10 weeks (n = 8). The subjects performed the same amount of work for the bouts. The muscle damage indicators were isometric strength (STR), relaxed elbow joint angle (RANG), flexed elbow joint angle (FANG), perceived muscle soreness ratings (SOR), and plasma creatine kinase activity (CK). These measures were obtained pre-exercise and 5 days following each bout. The first bout showed significant changes in all measures over time for both groups (P less than 0.01). For the 6-week group, significantly smaller changes in RANG (P less than 0.01), SOR (P less than 0.05), and CK (P less than 0.01), as well as significantly faster recoveries (P less than 0.05) for STR and FANG were produced in the second bout. For the 10-week group, significantly smaller changes in RANG (P less than 0.05) and CK (P less than 0.01) were demonstrated by the second bout, but not significant difference was found for STR, FANG, and SOR between bouts 1 and 2. Changes in CK were still significantly smaller than that of the first bout when 6 subjects (3 subjects from each group) performed the same exercise 6 months after the second bout, but no difference in other measures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A novel automatic escalator was designed, constructed and used in the present investigation. The aim of the present investigation was to compare the effect of two repeated sessions of stair descending versus stair ascending exercise on muscle performance and health-related parameters in young healthy men. Twenty males participated and were randomly divided into two equal-sized groups: a stair descending group (muscle-damaging group) and a stair ascending group (non-muscle-damaging group). Each group performed two sessions of stair descending or stair ascending exercise on the automatic escalator while a three week period was elapsed between the two exercise sessions. Indices of muscle function, insulin sensitivity, blood lipid profile and redox status were assessed before and immediately after, as well as at day 2 and day 4 after both exercise sessions. It was found that the first bout of stair descending exercise caused muscle damage, induced insulin resistance and oxidative stress as well as affected positively blood lipid profile. However, after the second bout of stair descending exercise the alterations in all parameters were diminished or abolished. On the other hand, the stair ascending exercise induced only minor effects on muscle function and health-related parameters after both exercise bouts. The results of the present investigation indicate that stair descending exercise seems to be a promising way of exercise that can provoke positive effects on blood lipid profile and antioxidant status.  相似文献   

19.
The effects of a single bout of swimming on free fatty acids (FFA) in adipose tissue, heart, skeletal muscle, and serum were examined. Surprisingly, in previously untrained rats, FFA were elevated (P less than 0.001) in epididymal, inguinal, and retroperitoneal adipose depots 48 h after a 2-h swim. FFA in the three fat depots returned to resting levels 96 h after exercise. In heart, soleus, and fast-red fibers of the quadriceps, FFA remained elevated (P less than 0.01) for as long as 72 h after the 2-h swim. Serum FFA were still elevated (P less than 0.001) 96 h after swimming but not after 168 h. These results provide evidence that the rise in FFA is an acute effect of exercise and not a cellular adaptation resulting from daily episodes of lipolysis induced by exercise training. In a separate experiment, involving the adaptive response to endurance exercise, adipocytes from epididymal, inguinal, and retroperitoneal depots were reduced in size (P less than 0.001) to approximately the same degree. These results provide evidence that adipocytes from each depot contribute equally in meeting the energy needs of muscle during repeated bouts of endurance exercise.  相似文献   

20.
Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle injury and recovery, we measured anterior crural muscle (tibialis anterior and extensor digitorum longus muscles) strength in skeletal muscle-specific FKBP12-deficient and wild-type (WT) mice before and after a single bout of 150 eccentric contractions, as well as before and after the performance of six injury bouts. Histological damage of the tibialis anterior muscle was assessed after injury. Body weight and peak isometric and eccentric torques were lower in FKBP12-deficient mice compared with WT mice. There were no differences between FKBP12-deficient and WT mice in preinjury peak isometric and eccentric torques when normalized to body weight, and no differences in the relative decreases in eccentric torque with a single or multiple injury bouts. After a single injury bout, FKBP12-deficient mice had less initial strength deficits and recovered faster (especially females) than WT mice, despite no differences in the degree of histological damage. After multiple injury bouts, FKBP12-deficient mice recovered muscle strength faster than WT mice and exhibited significantly less histological muscle damage than WT mice. In summary, FKBP12 deficiency results in less initial strength deficits and enhanced recovery from single (especially females) and repeated bouts of injury than WT mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号