首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reduced glutathione, in concentrations approximating those occurring in intact rat liver, causes swelling of rat liver mitochondria in vitro which is different in kinetics and extent from that yielded by L-thyroxine. The effect is also given by cysteine, which is more active, and reduced coenzyme A, but not by L-ascorbate, cystine, or oxidized glutathione. The optimum pH is 6.5, whereas thyroxine-induced swelling is optimal at pH 7.5. The GSH-induced swelling is not inhibited by DNP or dicumarol, nor by high concentrations of sucrose, serum albumin, or polyvinylpyrrolidone, in contrast to thyroxine-induced swelling. ATP inhibits the GSH swelling, but ADP and AMP are ineffective. Mn(-+) is a very potent inhibitor, but Mg(++) is ineffective. Ethylenediaminetetraacetate is also an effective inhibitor of GSH-induced swelling. The respiratory inhibitors amytal and antimycin A do not inhibit the swelling action of GSH, but cyanide does; these findings are consistent with the view that the oxidation-reduction state of the respiratory chain between cytochrome c and oxygen is a determinant of GSH-induced swelling. Reversal of GSH-induced swelling by osmotic means or by ATP in KCl media could not be observed. Large losses of nucleotides and protein occur during the swelling by GSH, suggesting that the action is irreversible. The characteristically drastic swelling action of GSH could be prevented if L-thyroxine was also present in the medium.  相似文献   

2.
Intracellular thiols like L-cystine and L-cystine play a critical role in the regulation of cellular processes. Here we show that Escherichia coli has two L-cystine transporters, the symporter YdjN and the ATP-binding cassette importer FliY-YecSC. These proteins import L-cystine, an oxidized product of L-cystine from the periplasm to the cytoplasm. The symporter YdjN, which is expected to be a new member of the L-cystine regulon, is a low affinity L-cystine transporter (K m = 1.1 μM) that is mainly involved in L-cystine uptake from outside as a nutrient. E. coli has only two L-cystine importers because ΔydjNΔyecS mutant cells are not capable of growing in the minimal medium containing L-cystine as a sole sulfur source. Another protein YecSC is the FliY-dependent L-cystine transporter that functions cooperatively with the L-cystine transporter YdeD, which exports L-cystine as reducing equivalents from the cytoplasm to the periplasm, to prevent E. coli cells from oxidative stress. The exported L-cystine can reduce the periplasmic hydrogen peroxide to water, and then generated L-cystine is imported back into the cytoplasm via the ATP-binding cassette transporter YecSC with a high affinity to L-cystine (K m = 110 nM) in a manner dependent on FliY, the periplasmic L-cystine-binding protein. The double disruption of ydeD and fliY increased cellular levels of lipid peroxides. From these findings, we propose that the hydrogen peroxide-inducible L-cystine/L-cystine shuttle system plays a role of detoxification of hydrogen peroxide before lipid peroxidation occurs, and then might specific prevent damage to membrane lipids.  相似文献   

3.
L-Alanine and 3-O-methyl-D-glucose accumulation by mucosal strips from rabbit ileum has been investigated with particular emphasis on the interaction between Na and these transport processes. L-Alanine is rapidly accumulated by mucosal tissue and intracellular concentrations of approximately 50 mM are reached within 30 min when extracellular L-alanine concentration is 5 mM. Evidence is presented that intracellular alanine exists in an unbound, osmotically active form and that accumulation is an active transport process. In the absence of extracellular Na, the final ratio of intracellular to extracellular L-alanine does not differ significantly from unity and the rate of net uptake is markedly inhibited. Amino acid accumulation is also inhibited by 5 x 10-5 M ouabain. 3-O-methyl-D-glucose accumulation by this preparation is similarly affected by ouabain and by incubation in a Na-free medium. The effects of amino acid accumulation, of ouabain, and of incubation in a Na-free medium on cell water content and intracellular Na and K concentrations have also been investigated. These results are discussed with reference to the two hypotheses which have been suggested to explain the interaction between Na and intestinal nonelectrolyte transport.  相似文献   

4.
L-arginine (L-Arg) deficiency results in decreased T-cell proliferation and impaired T-cell function. Here we have found that L-Arg depletion inhibited expression of different membrane antigens, including CD247 (CD3ζ), and led to an ER stress response, as well as cell cycle arrest at G0/G1 in both human Jurkat and peripheral blood mitogen-activated T cells, without undergoing apoptosis. By genetic and biochemical approaches, we found that L-Arg depletion also induced autophagy. Deprivation of L-Arg induced EIF2S1 (eIF2α), MAPK8 (JNK), BCL2 (Bcl-2) phosphorylation, and displacement of BECN1 (Beclin 1) binding to BCL2, leading to autophagosome formation. Silencing of ERN1 (IRE1α) prevented the induction of autophagy as well as MAPK8 activation, BCL2 phosphorylation and XBP1 splicing, whereas led T lymphocytes to apoptosis under L-Arg starvation, suggesting that the ERN1-MAPK8 pathway plays a major role in the activation of autophagy following L-Arg depletion. Autophagy was required for survival of T lymphocytes in the absence of L-Arg, and resulted in a reversible process. Replenishment of L-Arg made T lymphocytes to regain the normal cell cycle profile and proliferate, whereas autophagy was inhibited. Inhibition of autophagy by ERN1, BECN1 and ATG7 silencing, or by pharmacological inhibitors, promoted cell death of T lymphocytes incubated in the absence of L-Arg. Our data indicate for the first time that depletion of L-Arg in T lymphocytes leads to a reversible response that preserves T lymphocytes through ER stress and autophagy, while remaining arrested at G0/G1. Our data also show that the L-Arg depletion-induced ER stress response could lead to apoptosis when autophagy is blocked.  相似文献   

5.
6.
Light-dependent Reduction of Oxidized Glutathione by Ruptured Chloroplasts   总被引:1,自引:1,他引:0  
Crude extracts of pea shoots (Pisum sativum) catalyzed oxidized glutathione (GSSG)-dependent oxidation of NADPH which was attributed to NADPH-specific glutathione reductase. The pH optimum was 8 and the Km values for GSSG and NADPH were 23 μm and 4.9 μm, respectively. Reduced glutathione (GSH) inhibited the reaction. Crude extracts also catalyzed NADPH-dependent reduction of GSSG; the ratio of the rate of NADPH oxidized to GSH formed was 0.49. NADH and various substituted mono- and disulfides would not substitute for NADPH and GSSG respectively. Per mg of chlorophyll, enzyme activity of isolated chloroplasts was 69% of the activity of crude extracts.  相似文献   

7.
Glutathione (GSH) is an essential antioxidant responsible for the maintenance of intracellular redox homeostasis. As tumors outgrow their blood supply and become hypoxic, their redox homeostasis is challenged by the production of nitric oxide and reactive oxygen species (ROS). In gliomas, the sustained import of l-cystine via the l-cystine/l-glutamate exchanger, system xc, is rate-limiting for the synthesis of GSH. We show that hypoxia causes a significant increase in NO and ROS but without affecting glioma cell growth. This is explained by a concomitant increase in the utilization of GSH, which is accompanied by an increase in the cell-surface expression of xCT, the catalytic subunit of system xc, and l-cystine uptake. Growth was inhibited when GSH synthesis was blocked by buthionine sulfoximine (BSO), an inhibitor of the enzyme required for GSH synthesis, or when cells were deprived of l-cystine. These findings suggest that glioma cells show an increased requirement for GSH to maintain growth under hypoxic conditions. Therefore, approaches that limit GSH synthesis such as blocking system xc may be considered as an adjuvant to radiation or chemotherapy.  相似文献   

8.
Increasing evidence indicates that metabolism is implicated in the control of stem cell identity. Here, we demonstrate that embryonic stem cell (ESC) behaviour relies on a feedback loop that involves the non-essential amino acid L-Proline (L-Pro) in the modulation of the Gcn2-Eif2α-Atf4 amino acid starvation response (AAR) pathway that in turn regulates L-Pro biosynthesis. This regulatory loop generates a highly specific intrinsic shortage of L-Pro that restricts proliferation of tightly packed domed-like ESC colonies and safeguards ESC identity. Indeed, alleviation of this nutrient stress condition by exogenously provided L-Pro induces proliferation and modifies the ESC phenotypic and molecular identity towards that of mesenchymal-like, invasive pluripotent stem cells. Either pharmacological inhibition of the prolyl-tRNA synthetase by halofuginone or forced expression of Atf4 antagonises the effects of exogenous L-Pro. Our data provide unprecedented evidence that L-Pro metabolism and the nutrient stress response are functionally integrated to maintain ESC identity.Naturally occurring amino acids are emerging as key players in the regulation of the phenotypic plasticity of stem cells.1, 2, 3, 4, 5 Indeed, exogenously provided threonine and methionine, two essential amino acids (EAAs), regulate self-renewal and differentiation of pluripotent stem cells.2 Moreover, exogenously provided L-Proline (L-Pro), a non-essential amino acid (NEAA), induces mouse ESCs towards an embryonic stem cell-to-mesenchymal-like transition (esMT) that converts compact, adherent ESCs into mesenchymal-like spindle-shaped, highly invasive and metastatic pluripotent stem cells.4 This fully reversible process resembles the epithelial-to-mesenchymal transition (EMT), which is essential for normal development and contributes to pathological cancer progression.6, 7, 8 Interestingly, the Aldh18a1 gene is specifically induced in and marks the Primitive Endoderm (PrE) in the time window when the pluripotent epiblast precursors are specified within the inner cell mass (ICM) of the blastocyst.9 Since the Aldh18a1 enzyme catalyses the first and rate-limiting step of L-Pro biosynthesis, these findings suggest that L-Pro metabolism may regulate cell lineage segregation in early mammalian embryos. Despite its relevance, the molecular mechanisms underlying L-Pro control of stem cell identity remain largely unknown. This prompted us to investigate the early molecular events regulated by exogenously provided L-Pro in mouse ESCs.  相似文献   

9.
Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-l-alanine amidase, whereas Lc-Lys-2 is a γ-d-glutamyl-l-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with d-Ala4d-Asx-l-Lys3 in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting d-Ala4l-Ala-(l-Ala/l-Ser)-l-Lys3; moreover, they do not lyse the L. lactis mutant containing only the nonamidated d-Asp cross-bridge, i.e. d-Ala4d-Asp-l-Lys3. In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 l-Lys3-d-Asn-l-Lys3 bridges replacing the wild-type 4→3 d-Ala4-d-Asn-l-Lys3 bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly d-Asn but not PG with only the nonamidated d-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the d-Asn interpeptide bridge of PG.  相似文献   

10.
The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.  相似文献   

11.
Hart JW  Filner P 《Plant physiology》1969,44(9):1253-1259
The sulfur requirements of tobacco (Nicotiana tabacum L. var. Xanthi) XD cells grown in chemically defined liquid media can be satisfied by sulfate, thiosulfate, l-cyst(e)ine, l-methionine or glutathione, and somewhat less effectively by d-cyst (e) ine, d-methionine or dl-homocyst (e)ine. Sulfate uptake is inhibited after a 2 hr lag by l-cyst (e)ine, l-methionine, l-homocyst(e)ine or l-isoleucine, but not by any of the other protein amino acids, nor by d-cyst(e)ine. l-cyst(e)ine is neither a competitive nor a non-competitive inhibitor of sulfate uptake. Its action most closely resembles apparent uncompetitive inhibition. Inhibition of sulfate uptake by l-cyst(e)ine can be partially prevented by equimolar l-arginine, l-lysine, l-leucine, l-phenylalanine, l-tyrosine or l-tryptophan, but is little affected by any of the other protein amino acids. The effective amino acids are apparent competitive inhibitors of l-cyst(e)ine uptake after a 2 hr lag. Inhibition of sulfate uptake by l-methionine cannot be prevented, nor can uptake of l-methionine be inhibited by any single protein amino acid. The results suggest the occurrence of negative feedback control of sulfate assimilation by the end products, the sulfur amino acids, in cultured tobacco cells.  相似文献   

12.
13.
The transport of some sugars at the antiluminal face of renal cells was studied using teased tubules of flounder (Pseudopleuronectes americanus). The analytical procedure allowed the determination of both free and total (free plus phosphorylated) tissue sugars. The inulin space of the preparation was 0.333 ± 0.017 kg/kg wet wt (7 animals, 33 analyses). The nonmetabolizable α-methyl-D-glucoside entered the cells by a carrier-mediated (phloridzin-sensitive), ouabain-insensitive process. The steady-state tissue/medium ratio was systematically below that for diffusion equilibrium. D-Glucose was a poor inhibitor of α-methyl-glucoside transport, D-galactose was ineffective. The phloridzin-sensitive transport processes of 2-deoxy-D-glucose,D-galactose,and 2-deoxy-D-galactose were associated with considerable phosphorylation. Kinetic evidence suggested that these sugars were transported in free form and subsequently were phosphorylated. 2-Deoxy-D-glucose accumulated in the cells against a slight concentration gradient. This transport was greatly inhibited by D-glucose, whereas α-methyl-glucoside and also D-galactose and its 2-deoxy-derivative were ineffective. D-Galactose and 2-deoxy-D-galactose mutually competed for transport; D-glucose, 2-deoxy-D-glucose, and α-methyl-D-glucoside were ineffective. Studies using various sugars as inhibitors suggest the presence of three carrier-mediated pathways of sugar transport at the antiluminal cell face of the flounder renal tubule: the pathway of α-methyl-D-glucoside (not shared by D-glucose); the pathway commonly shared by 2-deoxy-D-glucose and D-glucose; the pathway shared by D-galactose and 2-deoxy-D-galactose.  相似文献   

14.
Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is a potent vasodilator and signaling molecule that plays an essential role in vascular remodeling of collateral arteries and perfusion recovery in response to hindlimb ischemia. In ischemic conditions, decreased NO bioavailability was observed because of increased oxidative stress, decreased l-arginine and tetrahy-drobiopterin. This study tested the hypothesis that dietary cosupplementation with tetrahydrobiopterin (BH4), l-arginine, and vitamin C acts synergistically to decrease oxidative stress, increase nitric oxide and improve blood flow in response to acute hindlimb ischemia. Rats were fed normal chow, chow supplemented with BH4 or l-arginine (alone or in combination) or chow supplemented with BH4 + l-arginine + vitamin C for 1 wk before induction of unilateral hindlimb ischemia. Cosupplementation with BH4 + l-arginine resulted in greater eNOS expression, Ca2+-dependent NOS activity and NO concentration in gastrocnemius from the is-chemic hindlimb, as well as greater recovery of foot perfusion and more collateral artery enlargement than did rats receiving either agent separately. The addition of vitamin C to the BH4 + l-arginine regimen did further increase these dependent variables, although only the increase in eNOS expression reached statistical significances. In addition, rats given all three supplements demonstrated significantly less Ca2+-independent activity, less nitrotyrosine accumulation, greater glutathione:glutathione disulfide (GSH:GSSG) ratio and less gastrocnemius muscle necrosis, on both macroscopic and microscopic levels. In conclusion, cosupplementation with BH4 + l-arginine + vitamin C significantly increased vascular perfusion after hindlimb ischemia by increasing eNOS activity and reducing oxidative stress and tissue necrosis. Oral cosupplementation of l-arginine, BH4 and vitamin C holds promise as a biological therapy to induce collateral artery enlargement.  相似文献   

15.
Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is a potent vasodilator and signaling molecule that plays essential roles in neovascularization. During limb ischemia, decreased NO bioavailability occurs secondary to increased oxidant stress, decreased l-arginine and tetrahydrobiopterin. This study tested the hypothesis that dietary cosupplementation with tetrahydrobiopterin (BH4), l-arginine and vitamin C acts synergistically to decrease oxidant stress, increase NO and thereby increase blood flow recovery after hindlimb ischemia. Rats were fed normal chow, chow supplemented with BH4 or l-arginine (alone or in combination) or chow supplemented with BH4 + l-arginine + vitamin C for 1 wk before induction of hindlimb ischemia. In the is-chemic hindlimb, cosupplementation with BH4 + l-arginine resulted in greater eNOS and phospho-eNOS (P-eNOS) expression, Ca2+-dependent NOS activity and NO concentration in the ischemic calf region (gastrocnemius), as well as greater NO concentration in the region of collateral arteries (gracilis). Rats receiving cosupplementation of BH4 + l-arginine led to greater recovery of foot perfusion and greater collateral enlargement than did rats receiving either agent separately. The addition of vitamin C to the BH4 + l-arginine regimen further increased these dependent variables. In addition, rats given all three supplements showed significantly less Ca2+-independent activity, less nitrotyrosine accumulation, greater glutathione (GSH)–to–glutathione disulfide (GSSG) ratio and less gastrocnemius muscle necrosis, on both macroscopic and microscopic levels. In conclusion, co-supplementation with BH4 + l-arginine + vitamin C significantly increased blood flow recovery after hindlimb ischemia by reducing oxidant stress, increasing NO bioavailability, enlarging collateral arteries and reducing muscle necrosis. Oral cosupplementation of BH4, l-arginine and vitamin C holds promise as a biological therapy to induce collateral artery enlargement.  相似文献   

16.
Cellular superoxide radicals (O2) are mostly generated during mitochondrial oxygen metabolism. O2 serves as the raw material for many reactive oxygen species (ROS) members like H2O2 and OH.− radicals following its catalysis by superoxide dismutase (SOD) enzymes and also by autocatalysis (autodismutation) reactions. Mitochondrial ROS generation could have serious implications on degenerative diseases. In model systems overproduction of mitochondrial O2 resulting from the loss of SOD2 function leads to movement disorders and drastic reduction in life span in vertebrates and invertebrates alike. With the help of a mitochondrial SOD2 loss-of-function mutant, Sod2n283, we measured the sensitivity of muscles and neurons to ROS attack. Neural outputs from flight motor neurons and sensory neurons were unchanged in Sod2n283 and the entire neural circuitry between the giant fiber (GF) and the dorsal longitudinal muscles (DLM) showed no overt defect due to elevated ROS. Such insensitivity of neurons to mitochondrial superoxides was further established through neuronal expression of SOD2, which failed to improve survival or locomotive ability of Sod2n283. On the other hand, ultrastructural analysis of Sod2n283 muscles revealed fewer mitochondria and reduced muscle ATP production. By targeting the SOD2 expression to the muscle we demonstrate that the early mortality phenotype of Sod2n283 can be ameliorated along with signs of improved mobility. In summary, muscles appear to be more sensitive to superoxide attack relative to the neurons and such overt phenotypes observed in SOD2-deficient animals can be directly attributed to the muscle.BETWEEN Drosophila, mouse, and human, the enzymatic antioxidant defense system shares similar organization both structurally (Landis and Tower 2005) and functionally. Besides having a good degree of homology (Duttaroy et al. 1994; Landis and Tower 2005), other significant similarities include the presence of a single copy of Sod1 and Sod2 genes in each with no degree of functional complementation between these enzymes (Copin et al. 2000). While vertebrates have developed additional antioxidant defense enzymes such as glutathione peroxidase (Gpx) and extracellular superoxide dismutase (EcSOD or Sod3), neither Gpx nor an active SOD3 has been demonstrated in Drosophila, although a Sod3-like sequence has been identified (Landis and Tower 2005). Complete loss of SOD2 function is fatally injurious for both mice and Drosophila (Li et al. 1995; Lebovitz et al. 1996; Kirby et al. 2002; Duttaroy et al. 2003). The severe phenotypic effects of SOD2 loss of function have been attributed to elevated DNA damage and protein carbonylation (Golden and Melov 2001). SOD2 loss of function has also been attributed to “free radical attack” or “oxidative insult” on mitochondria where obvious mitochondrial damage was apparent from the inactivation of mitochondrial Fe-S cluster enzymes aconitase and succinate dehydrogenase (Melov et al. 1999; Kirby et al. 2002; Paul et al. 2007). Furthermore, impairment of cellular signaling, specifically those induced by reactive oxygen species (ROS) (Klotz 2005), might also play a very significant role in the early mortality effects of SOD2-deficient flies as indicated recently (Wicks et al. 2009).Sod2 null mice with damaged mitochondria display a number of pathologies including cardiomyopathy (Li et al. 1995), neurodegeneration, and seizures (Melov et al. 1998). Drosophila mutants of mitochondrial dysfunction are also claimed to be associated with neurodegeneration (Kretzschmar et al. 1997; Min and Benzer 1997, 1999; Rogina et al. 1997; Palladino et al. 2002, 2003; Celotto et al. 2006). In addition to the neurons, muscles are important targets for oxidative modification (Choksi and Papaconstantinou 2008; Choksi et al. 2008). Aerobic muscles with high mitochondrial content and high myoglobin levels, for example, show a significant increase in oxidative modification of all electron transport chain proteins compared to muscles with fewer mitochondria and less myoglobin (anaerobic muscle) (Choksi and Papaconstantinou 2008; Choksi et al. 2008). Mice lacking the Cu-ZnSOD enzyme suffer from a rapid loss of skeletal muscle mass, resembling an accelerated sarcopenia (Jackson 2006; Muller et al. 2006). We therefore set out to measure the impact of heightened superoxide concentration on neurons and muscles of Sod2n283 flies that are devoid of SOD2, the principal scavenger of superoxide radicals in mitochondria (Duttaroy et al. 2003; Belton et al. 2006).  相似文献   

17.
The osmotic water permeability coefficient, Lp, for human and dog red cells has been measured as a function of medium osmolality, and found to depend on the osmolality of the bathing medium. In the case of human red cells Lp falls from 1.87 x 10-11 cm3/dyne sec at 199 mOSM to 0.76 x 10-11 cm3/dyne sec at 516 mOSM. A similar decrease was observed for dog red cells. Moreover, Lp was independent of the direction of water movement and the nature of the solute used to provide the osmotic pressure gradient; it depended only on the final osmolality of the medium. Furthermore, Lp was not affected by pH in the range of 6 to 8 nor by the presence of drugs such as valinomycin (1 x 10-6 M) and tetrodotoxin (3.2 x 10-6 M). The instantaneous nature of the response to changes in external osmolality suggests that the hydraulic conductivity of the membrane is controlled by a thin layer at the outer face of the membrane.  相似文献   

18.
The rate at which the postjunctional membrane of muscle fibers becomes desensitized to the action of carbamylcholine is increased after the muscle has been soaked in solutions containing increased concentrations of calcium. Some further aspects of this effect of calcium were investigated by measuring changes in the input resistance of single fibers of the frog sartorius during local perfusion of the neuromuscular junction with 2.73 x 10-3 M carbamylcholine in isolated muscles immersed in 165 mM potassium acetate. It was found that (a) sudden changes in the local concentration of calcium brought about by perfusing fibers with carbamylcholine solutions containing 20 mM calcium, 40 mM oxalate, or 40 mM EDTA were followed within 20 sec by marked changes in the rate of desensitization; (b) prior to 13 sec after the introduction of carbamylcholine, however, no effect on the input resistance could be detected even though the muscle had been presoaked in 10 mM calcium; (c) the ability of high concentrations of calcium to bring about rapid desensitization disappears when a lower concentration of carbamylcholine (0.137 x 10-3 M) is applied to the muscle fiber. These findings suggest that calcium present in the extracellular fluid can act directly on the postjunctional membrane to promote the desensitization process and that an increased permeability of the membrane to calcium brought about by the presence of carbamylcholine is a factor which contributes to this action.  相似文献   

19.
Evidence for a specific glutamate/h cotransport in isolated mesophyll cells   总被引:1,自引:1,他引:0  
Mechanically isolated Asparagus sprengeri Regel mesophyll cells were suspended in 1 millimolar CaSO4. Immediate alkalinization of the medium occured on the addition of 1 millimolar concentrations of l-glutamate (Glu) and its analog l-methionine-d,l-sulfoximine (l-MSO). d-Glu and the l isomers of the protein amino acids did not elicit alkalinization. l-Glu dependent alkalinization was transient and acidification resumed after approximately 30 to 45 minutes. At pH 6.0, 5 millimolar l-Glu stimulated initial rates of alkalinization that varied between 1.3 to 4.1 nmol H+/106 cells·minute. l-Glu dependent alkalinization was saturable, increased with decreasing pH, was inhibited by carbonyl cyanide-p-trichloromethoxyphenyl hydrazone (CCCP), and was not stimulated by light. Uptake of l-[U-14C]glutamate increased as the pH decreased from 6.5 to 5.5, and was inhibited by l-MSO. l-Glu had no influence on K+ efflux. Although evidence for multiple amino acid/proton cotransport systems has been found in other tissues, the present report indicates that a highly specific l-Glu/proton uptake process is present in Asparagus mesophyll cells.  相似文献   

20.
The metabolism of myo-inositol-2-14C, d-glucuronate-1-14C, d-glucuronate-6-14C, and l-methionine-methyl-14C to cell wall polysaccharides was investigated in excised root-tips of 3 day old Zea mays seedlings. From myo-inositol, about one-half of incorporated label was recovered in ethanol insoluble residues. Of this label, about 90% was solubilized by treatment, first with a preparation of pectinase-EDTA, then with dilute hydrochloric acid. The only labeled constituents in these hydrolyzates were d-galacturonic acid, d-glucuronic acid, 4-O-methyl-d-glucuronic acid, d-xylose, and l-arabinose, or larger oligosaccharide fragments containing these units. Medium external to excised root-tips grown under sterile conditions in myo-inositol-2-14C contained labeled polysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号