首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure of CV-1 cells infected with subacute sclerosing panencephalitis (SSPE) viruses was compared with that of CV-1 cells infected with the wild or Edmonston strain of measles virus. Both SSPE viruses and the measles viruses produced two types of nucleocapsid structures: smooth filaments, 15 to 17 nm in diameter, and granular filaments, 22 to 25 nm. The smooth and granular filaments produced by SSPE and measles virus did not differ in appearance. In CV-1 cells infected with SSPE viruses, smooth filaments formed large intranuclear inclusions and granular filaments occupied a large area of the cytoplasm, but always spared the area under the cell membrane. Particles budding from the surface of these cells contained no nucleocapsids. In CV-1 cells infected with measles virus, only small aggregates of smooth filaments were seen in the nuclei. Granular filaments in the cytoplasm predominantly occupied the area under the cell membrane, and were aligned beneath the cell membrane in a parallel fashion and assembled into budding particles. These differences between SSPE and measles virus may be regarded as quantitative, but they do distinguish SSPE viruses from measles virus. Moreover, the formation of large nuclear inclusions filled with smooth filaments appears to be a characteristic process of SSPE, but not of measles, since this type of inclusion is invariably seen in SSPE brain tissues, brain cultures derived from them, and CV-1 cells infected with SSPE viruses.  相似文献   

2.
3.
Summary Amaranthus plants infected with a virus of rod-shaped particles showed under the light microscope intracytoplasmic amorphous and crystalline inclusions.The submicroscopic organization of mesophyll cells from infectedAmaranthus leaves by electron microscopy is described. Besides big crystalline inclusions, long dark inclusions correspondent to needle-like inclusions observed by light microscopy are definable in the cytoplasm. The amorphous inclusion bodies were formed by an overgrown protrusion of vacuolate cytoplasm containing virus particles, long very dark stained inclusions forming dense bands and rings, normal elements of the cytoplasm such as mitochondria, endoplasmic reticulum and ribosomes, and some spherosomes. Inclusions and virus particles were not found in chloroplasts, mitochondria or nuclei of infected cells.  相似文献   

4.
Immuno-Electron Microscopy of the Morphogenesis of Mumps Virus   总被引:12,自引:8,他引:4       下载免费PDF全文
The fine structure of mumps virus-infected chick embryo fibroblastic cells was examined sequentially after viral inoculation. Intracytoplasmic nucleoprotein strands, similar to those described for parainfluenza viruses, were detectable in small aggregates between 36 and 48 hr. The peripheral strands of this viral component lie beneath and along an antigenically altered bulging portion of the cell membrane. The outermost strands are consistently parallel to the differentiated segment of the plasma membrane, which is invariably associated with surface projections. As has been found with other myxoviruses, mumps virus replicates by budding from the cell surface. The virus particle, roughly spherical in shape, has a size ranging from 1,000 to 8,000 A. Filamentous forms are rarely observed in the present culture system. Ferritin-conjugated antibody specifically labels the cytoplasmic nucleoprotein, the modified cell membrane, and the virus particle. Intranuclear inclusions of low electron density and morphologically different from those described in measles virus-infected HeLa and amnion cells were observed in the nucleus of several infected cells. Immuno-electron microscopic observations suggest that the nucleoprotein synthesis rate exceeds that of cell membrane differentiation into viral envelope. This difference results in the accumulation of viral nucleoprotein in large intracytoplasmic masses which can be demonstrated by electron microscopy.  相似文献   

5.
Electron Microscopy of Measles Virus Replication   总被引:15,自引:5,他引:10       下载免费PDF全文
Replication of measles virus in HeLa cells was examined by electron microscopy with ultrathin sectioning and phosphotungstic acid negative staining methods. The cytoplasmic inclusion bodies consisted of masses of helical nucleocapsid which was similar in structure to the nucleocapsid found in measles virions. The cytoplasmic helical nucleocapsid appeared to align near the HeLa cell membrane, and the membrane differentiated into the internal membrane of the viral envelope and the outer layer of the short projections. The viral particles were released by a budding process involving incorporation into the viral envelope of membrane which was contiguous to but morphologically altered from the membrane of the HeLa cells. The intranuclear inclusion bodies were composed of tubular structures similar to those found in the cytoplasmic inclusion bodies. These structures aggregated to crystalline arrangement. The relationship between nuclear inclusion body and replication of measles virus was not clear.  相似文献   

6.
RELATION OF TOBACCO MOSAIC VIRUS TO THE HOST CELLS   总被引:10,自引:1,他引:9       下载免费PDF全文
The relation of tobacco mosaic virus (TMV) to host cells was studied in leaves of Nicotiana tabacum L. systemically infected with the virus. The typical TMV inclusions, striate or crystalline material and ameboid or X-bodies, which are discernible with the light microscope, and/or particles of virus, which are identifiable with the electron microscope, were observed in epidermal cells, mesophyll cells, parenchyma cells of the vascular bundles, differentiating and mature tracheary elements, and immature and mature sieve elements. Virus particles were observed in the nuclei and the chloroplasts of parenchyma cells as well as in the ground cytoplasm, the vacuole, and between the plasma membrane and the cell wall. The nature of the conformations of the particle aggregates in the chloroplasts was compatible with the concept that some virus particles may be assembled in these organelles. The virus particles in the nuclei appeared to be complete particles. Under the electron microscope the X-body constitutes a membraneless assemblage of endoplasmic reticulum, ribosomes, virus particles, and of virus-related material in the form of wide filaments indistinctly resolvable as bundles of tubules. Some parenchyma cells contained aggregates of discrete tubules in parallel arrangement. These groups of tubules were relatively free from components of host protoplasts.  相似文献   

7.
The development of measles virus in cultures of both primary human amnion cells and H.Ep.-2 cells has been followed by means of the indirect fluorescent antibody technic and concurrent light and electron microscope observations. The immunofluorescence studies revealed that there is a latent period for development of demonstrable measles virus antigen. In amnion cells the latent period lasted for at least 3 days. In contrast, virus antigen could be detected in H.Ep.-2 cells as early as 12 hours following inoculation. In each cell system virus antigen was seen in either nucleus or cytoplasm of infected cells, or both. Early localization tended to be perinuclear. Intranuclear fluorescence was generally less bright and less widespread than cytoplasmic fluorescence. Giant cells and long cytoplasmic spindle-shaped processes appeared regularly in infected cultures. Infectious virus was liberated into the nutrient fluid but when extracellular virus was inhibited by antibody, spread of infection from cell to cell in the monolayer still continued. Results obtained in concurrent electron microscope studies will be presented separately. Correlation of the results of the immunofluorescence and electron microscope studies suggests the possibility that much of the immunofluorescence observed might be due to antigen in virus precursors or components.  相似文献   

8.
Morphogenesis of the Nucleoprotein of Vesicular Stomatitis Virus   总被引:5,自引:4,他引:1       下载免费PDF全文
Accumulation of the nucleoprotein of vesicular stomatitis virus (VSV) in the cytoplasm of BHK-21 cells and in two of four human cell lines was demonstrated. Appearance and progression of the nucleoprotein inclusions paralleled development of virus-specific immunofluorescence and production of virus progeny. The inclusions appeared early as discrete foci of filamentous material which eventually increased in size to form large masses which replaced normal cytoplasmic constituents. The filamentous strands were found in close proximity to budding virions. The inclusion material was extracted from infected cells and purified in cesium chloride gradients. The isolated filaments resembled the ribonucleoprotein isolated from purified virions. They incorporated (3)H-uridine, exhibited virus-specific complement-fixing activity, had a buoyant density of 1.32 g/cm(3), and appeared as single wavy strands the width of which varied from 2.5 to 8.5 nm, depending on the angle of viewing.  相似文献   

9.
During a study of the ultrastructure of a nuclear polyhedrosis virus of the velvetbean caterpillar, Anticarsia gemmatalis, various types of nuclear and cytoplasmic inclusions were found in fat body tissue heavily infected with the virus. Virogenic stroma was present in the nuclei of most infected cells. Bundles of fibrous material were observed in the nuclei and cytoplasm of cells containing polyhedral bodies. Other nuclear inclusions included concentric multilayered material, vacuoles, and membrane structures.  相似文献   

10.
Three cell cultures established from brain tissue obtained by biopsy of patients with subacute sclerosing panencephalitis (SSPE) were studied with the electron microscope in an attempt to correlate ultrastructural changes with those found by cytochemistry and immunocytology. These cells contained a large number of nucleocapsids resembling those of a paramyxovirus concentrated in the nuclear inclusions, but also seen free in the nucleus and occasionally in the cytoplasmic inclusions. Nuclear bodies associated with the nucleocapsids and granular filaments occupied a vast area of the cytoplasm. The nuclear inclusions containing nucleocapsids corresponded to the eosinophilic and fluorescent nuclear inclusions. The areas occupied by granular filaments corresponded to the diffuse cytoplasmic fluorescence. The ultrastructural changes were similar to those seen in the original brain biopsies. In addition papova-like virions were noted in brain cell cultures derived from a biopsy but not in the brain tissue itself. Their relationship to SSPE remains undetermined.  相似文献   

11.
THE FINE STRUCTURE OF THE CELLS IN MOUSE SARCOMA 37 ASCITIC FLUIDS   总被引:11,自引:8,他引:3       下载免费PDF全文
The tumour cells and the reaction cells in Sarcoma 37 ascitic fluids have been studied in thin sections with the electron microscope. The reaction cells were either leucocytes or much larger acidophilic peritoneal cells of the same dimensions as the tumour cells; the peritoneal cells formed as much as 20 per cent of the large cell population. The fine structure of the cells is described and some new observations recorded. It has been found that the cell membrane of eosinophil granulocytes has a laminated composition and the characteristic granules of these cells a double limiting membrane. The pores in the double nuclear membrane of the peritoneal cells have been observed to have a fine line running across them. In the tumour cells, a rounded granular body with a central dense area has been found in the region of the centrosome; these cells were also seen to contain rows of parallel smooth surfaced cisternae lying 150 mµ apart similar to those hitherto only observed in spermatids. There was a feltwork of fine filaments in the cytoplasm of the centrosome region of the tumour cells. The cytoplasmic fine structure underlying the basophilia of the tumour cells and the acidophilia of the peritoneal cells is compared and discussed.  相似文献   

12.
Cassava mosaic disease (CMD) exists throughout Africa, and cassava latent virus (CLV) has been implicated as the etiological agent in Kenya and West Africa. However, in Southern Africa, the causal agent of CMD was not until recently associated with CLV, and the possibility of a second flexuous virus particle has not been ignored. Attempts to isolate and visualize CLV antigen have been successful with Nicotiana benthamiana, an indicator host plant of CLV, but all efforts to isolate and visualize particles in infected cassava plants have failed. Immunocytochemical studies were undertaken in an attempt to localize virus antigen in infected cassava tissue.Cytochemical staining (light microscope) of infected cassava leaf material revealed the presence of inclusion bodies in epidermal and palaside mesophyll cells, and in epidermal collenchyma and outer parenchyma cells from the petiole and stem. However, transmission electron-microscopical (TEM) investigations revealed electron dense bodies in the cytoplasm, and no characteristic CLV nuclear inclusion bodies were evident. Transmission experiments to N. benthamiana and N. tabacum were attempted and leaves, exhibiting symptoms, examined microscopically. The nuclei appeared swollen (in comparison to uninfected leaves), a characteristic of CLV- infected N. benthamiana. However at the TEM level, no characteristic fibrillar-ring inclusion bodies or particles, could be visualized.Further immunocytochemical investigations were initiated, employing antisera raised against CLV isolated from N. benthamiana, and antisera for cassava common mosaic virus (CCMV), cassava brown streak virus (CBSV) and cassava X virus (CsXV). Goat anti-rabbit IgG-gold was used as a direct stain. No labelling occurred with CCMV and CBSV antisera. Intense gold labelling was located in the cytoplasm of phloem, mesophyll and epidermal cells of infected cassava and to a lesser extent in N. tabacum and N. benthamiana using affinity chromatography purified CLV antiserum. Little labelling was observed in nuclei of infected cells. Inconclusive results were obtained with CsXV antiserum.Immunogold labelling located CLV viral antigens in infected cassava leaf tissue. This observation, together with positive ELISA, transmission and DNA hybridization experiments, proves conclusively that CLV viral antigen is present in infected cassava in Southern Africa. However, most viral antigen in infected cassava, unlike N. benthamiana (fibrillar and granular nuclear inclusions) appears to be in the cytoplasm. This may tentatively suggest that the CLV protein is synthesized in the cytoplasm of its natural host, cassava, even though the virus may assemble in the nucleus at the appropriate time. However, as yet no virus inclusions have been observed in nuclei of infected cassava. Due to previous isolation of a flexuous rod and ambiguous staining results, the possibility of two viruses in cassava cannot be ruled out.  相似文献   

13.
The transmembrane association of the measles virus hemagglutinin and hemolysin surface proteins with intracellular viral antigens was studied. Rabbit antisera monospecific for measles virus matrix and nucleocapsid proteins and a human antiserum containing specificities for both the hemagglutinin and hemolysin proteins were used to study the co-capping of these proteins in human Lu 106 cell-line, chronically infected with measles virus. Capping of the surface-associated envelope components was accompanied by co-capping of the matrix and nucleocapsid proteins, the latter being localized mainly within the inclusions. This demonstrated transmembrane communication between surface-associated envelope components and the intracellular measles virus matrix and nucleocapsid proteins. The results demonstrated the existence of a linkage between viral inclusions and viral proteins associated with cell membranes. In the presence of cytochalasin B (1--2 micrograms/ml), co-capping of the matrix protein was unchanged or slightly enhanced, whereas co-capping of the nucleocapsid protein decreased, indicating that actin filaments may mediate the communication between viral nucleocapsids and the cell membrane.  相似文献   

14.
A correlation of cytochemical changes with virus production has been studied in L cells infected with Mengovirus. After a latent period of about 2 hours, virus was produced rapidly, reaching maximum titers of up to 12,000 particles per cell in 6 to 8 hours. The earliest cytological change was in the nucleus and consisted of a slight condensation of chromatin. There is no evidence, however, for the multiplication of either the viral RNA or protein in the nucleus. RNA, of high molecular weight, accumulated in the perinuclear area of the cytoplasm and was later found in inclusions. The perinuclear RNA was digestible with RNase and may be located in or on ribosomes. The inclusion RNA was resistant to RNase but could be removed by pepsin or potassium permanganate; it is probably in completed virus particles. Viral antigen was first observed in a perinuclear location and later in the above-mentioned inclusions. Although the viral protein contains appreciable amounts of arginine and lysine, it is not a basic protein of the histone type. Phase-contrast microscopy of living cells clearly demonstrated the role of the inclusions in release of virus from infected cells. A comparison is made between these cytological changes in Mengo-infected cells and those which have been found by other workers in polio-infected cells. There are many very similar changes.  相似文献   

15.
Thin sections of leaf tissue infected with 12 rod-shaped viruses varying from 180 mμ to 750 mμ in length were examined in the electron microscope. Neither intranuclear nor cytoplasmic inclusions occurred in healthy tissue. Intranuclear inclusions were observed only in material infected with tobacco etch virus. Several types of cytoplasmic inclusions were induced by the group of viruses varying in length from 730 mμ to 750 mμ; however, only one type of inclusion was common to all seven viruses of this group. It is proposed that this inclusion, which appears as a pin-wheel in cross section and as a bundle in longitudinal section, is diagnostic for infection with viruses of the potato Y group, i.e., rod-shaped viruses whose lengths vary from 730 mμ to 750 mμ.  相似文献   

16.
A human cell line (Lu106) carrier of measles virus was studied in a Nomarski interference-contrast microscope (NICM) and a scanning electron microscope (SEM). The results from this were correlated with fine structure findings obtained from analyses made in the transmission electron microscope (TEM). In both the NICM and SEM it was possible to identify intracellular perinuclear structures, which most likely represent aggregates of measles nucleocapsids. These structures appeared in the NICM as opaque vesicles and in the SEM as bulges in the flattened cells. The SEM also proved to be used for determining cell surface characteristics specific for the carrier culture, which were lacking in uninfected Lu106 cells. In the carrier culture, there were vesiculated cells with bled-like polymorphic and ridged projections, and cells with webbed cytoplasmic extensions. Ridges and transverse striations observed on these cellular protrusions and on microvilli possibly denote oriented viral nucleocapsids at the cell membrane. Furthermore in the carrier cells, the microvilli were more heterogenous in length and diameter and were more frequently branched or fused together when compared to microvilli in uninfected cells. The results are discussed in view of the available information on the appearance of virus-infected or virus-transformed cells in the SEM, also inregard to the various factors, other than virus infection, which play a role in determining the surface features of monolayer cells.  相似文献   

17.
Andrew Bajer 《Chromosoma》1968,25(3):249-281
Endosperm ofHaemanthus katherinae has been used as material. Changes in arrangement of spindle fibers, their movements, and behavior of substructures as seen in living cells with the Nomarski system are described. The same cell has been observed with the light microscope and subsequently after the usual procedures with the electron microscope. Arrangement of microtubules forming different types of spindle fibers and their relation to each other during the progress of mitosis is described. Kinetochore structure has also been studied. It is suggested that kinetochore fibers are transported to the poles during anaphase. This conclusion is supported by fine structure studies.  相似文献   

18.
Samples taken at different intervals of time from suspension cultures of the NCTC 1469 line of mouse liver—derived (ML) cells infected with a mouse hepatitis virus have been studied with the electron microscope. The experiments revealed that the viruses are incorporated into the cells by viropexis within 1 hour after being added to the culture. An increasing number of particles are found later inside dense cytoplasmic corpuscles similar to lysosomes. In the cytoplasm of the cells from the samples taken 7 hours after inoculation, two organized structures generally associated and never seen in the controls are observed: one consists of dense material arranged in a reticular disposition (reticular inclusion); the other is formed by small tubules organized in a complex pattern (tubular body). No evidence has been found concerning their origin. Their significance is discussed. With the progression of the infection a system of membrane-bounded tubules and cisternae is differentiated in the cytoplasm of the ML cells. In the lumen of these tubules or cisternae, which are occupied by a dense material, numerous virus particles are observed. The virus particles which originate in association with the limiting membranes of tubules and cisternae are released into their lumen by a "budding" process. The virus particles are 75 mµ in diameter and possess a nucleoid constituted of dense particles or rods limiting an electron transparent core. The virus limiting membrane is sometimes covered by an outer layer of a dense material. In the cells from the samples taken 14 to 20 hours after inoculation, larger zones of the cell cytoplasm are occupied by inclusion bodies formed by channels or cisternae with their lumens containing numerous virus particles. In the samples taken 20 hours or more after the inoculation numerous cells show evident signs of degeneration.  相似文献   

19.
Two rubella virus strains isolated in this laboratory were investigated in terms of their growth in LLC-MK(2) cell cultures and their effect on cell morphology. Rubella virus grew readily in LLC-MK(2) cells, but cytopathic effects of the virus were not observed in infected cultures. Such infected cultures can be subcultured indefinitely and continue to shed virus. Examination of rubella-infected cell cultures by electron microscopy showed the presence of annulate lamellae in the cytoplasm of 15% of the cells. No changes were evident in the nuclei. These membranous inclusions varied in complexity from parallel arrays of annulate lamellae to large lamellar structures of complex morphology. An occasional cell contained a crystal lattice structure in association with the lamellae. Larger inclusions, consisting of disorganized arrays of "unit" membranes, were also found. Uninfected cells were devoid of annulate lamellae, crystals, and complex membranous inclusions. No viruslike particles were observed in any part of the cells from infected cultures. The significance of the structures observed has not been determined.  相似文献   

20.
The common renal adenocarcinoma of the leopard frog was studied in thin sections with the electron microscope. Approximately a third of the tumors examined were found to contain spheroidal bodies of uniform size and distinctive morphology that are believed to be virus particles. These consist of hollow spheres (90 to 100 mµ) having a thick capsule and a dense inner body (35 to 40 mµ) that is eccentrically placed within the central cavity (70 to 80 mµ). Virus particles of this kind occur principally in the cytoplasm but occasionally they are also found in the nucleus and in the extracellular spaces of the tumor. The intranuclear inclusion bodies that are visible with the light microscope are largely comprised of hollow, spherical vesicles with thin limiting membranes. These are embedded in a finely granular matrix. A few of the thin walled vesicles contain a dense inner body like that of the cytoplasmic virus particles. This suggests that they may be immature virus particles. The inclusion bodies are believed to be formed in the course of virus multiplication but they usually contain very few mature virus particles. Bundles of dense filaments and peculiar vacuolar inclusions also occur in the cytoplasm of the tumor cells. These seem to be related in some way to the presence of virus but their origin and significance remain obscure. These findings are discussed in relation to previous work suggesting that the Lucké adenocarcinoma is caused by an organ-specific filtrable agent. It is concluded that the "virus particles" found in electron micrographs of the tumor cells may be the postulated tumor agent. On the other hand, the possibility remains that the particles described here are not those that are causally related to the tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号