首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
淀粉降解代谢与种子萌发、叶片光合作用、块茎和块根贮藏及肉质果实的发育密切相关。体外酶学实验普遍认为,β—淀粉酶是催化淀粉水解的重要酶之一,然而由于其在生活细胞中经常定位于叶绿体或质体之外,与淀粉基质在亚细胞水平上相互隔离,所以该酶在植物活体内的生理功能至今尚不清楚。我们最近首次发现,苹果果实生活细胞中的β-淀粉酶主要定位于质体内,与其淀粉基质居于同一亚细胞区域,但尚不清楚这一现象是否具有普遍性。本研究利用胶体金免疫电镜定位技术证明,甘薯块根生活细胞中的β-淀粉酶也是主要定位于质体内,围绕淀粉粒分布较多,其他亚细胞区域内β-淀粉酶分布很少,说明该酶主要分布于其功能区域。质体内胶体金分布密度随着块根发育的推进显著增加,但β-淀粉酶区隔于质体内的亚细胞分布特点在块根整个生长发育期没有变化。这些结果明确地展示出甘薯块根生活细胞中β-淀粉酶与其淀粉基质居于同一亚细胞区域内,为β-淀粉酶普遍参与植物生活细胞或贮藏器官生活细胞中的淀粉水解提供了证据。  相似文献   

2.
淀粉降解代谢与种子萌发、叶片光合作用、块根贮藏及肉质果实的发育密切相关. 体外酶学实验普遍认为, β-淀粉酶是催化淀粉水解的重要酶之一, 然而由于其在生活细胞中经常定位于叶绿体或质体之外, 与淀粉基质在亚细胞水平上相互隔离, 所以该酶在植物活体内的生理功能至今尚不清楚. 用苹果果实进行的实验表明, 在果实发育过程中, β-淀粉酶活性由低到高, 与淀粉含量大致呈现互为消长的变化. Western blotting实验证明, 在果实发育过程中, β-淀粉酶的表观数量也是由少到多, 与活性的变化一致. 利用胶体金免疫电子显微镜定位技术证明, 果实内β-淀粉酶主要定位于质体内, 围绕淀粉粒分布较多, 其他亚细胞区域内β-淀粉酶分布很少, 说明该酶主要分布于其功能区域, 这种亚细胞分布特点在果实整个生长发育期没有变化. 在亚细胞水平上明确地展示出植物生活细胞中β-淀粉酶与其淀粉基质居于同一亚细胞区域内. 质体内胶体金分布密度随着果实发育的推进增加显著, 发育后期的质体内或淀粉粒上存在高密度的胶体金颗粒, 这个结果与Western blotting实验相互印证. 可以认为, β-淀粉酶参与了果实细胞质体中淀粉的水解过程.  相似文献   

3.
淀粉降解代谢与种子萌发、叶片光合作用、块根贮藏及肉质果实的发育密切相关.α-淀粉酶是催化淀粉水解的重要酶之一,然而由于它在生活细胞中经常定位于叶绿体或质体之外,与淀粉基质在亚细胞水平上相互隔离,所以该酶在植物活体内的生理功能至今不完全清楚.研究表明,在苹果(Malus domestica Borkh cv. Starkrimson)果实发育过程中,α-淀粉酶活性由低到高,与淀粉含量大致呈现互为消长的变化.Western blotting实验证明,在果实发育过程中,α-淀粉酶的表观数量也是由少到多,与活性的变化一致.利用胶体金免疫电镜定位技术证明,果实内α-淀粉酶主要定位于质体内,其他亚细胞区域内α-淀粉酶分布很少;尤其在果实发育中后期,围绕质体内淀粉粒有高密度的α-淀粉酶分布,说明该酶主要分布于细胞内功能区域.α-淀粉酶优先定位于质体内的亚细胞分布特点在果实整个生长发育期没有变化.随着果实发育的推进,质体内胶体金分布密度显著增加,此结果与Western blotting实验相互印证.推测α-淀粉酶参与了果实细胞内质体中淀粉的水解过程.  相似文献   

4.
淀粉降解代谢与种子萌发、叶片光合作用,块根贮藏及肉质果实的发育密切相关,α-淀粉酶是催化淀粉水解的重要酶之一。然而由于它在生活细胞中经常定位于叶绿体或质体之外,与淀粉基质在亚细胞水平上相互隔离,所以该酶在植物活体内的生理功能至今不完全清楚,研究表明,在苹果(Malus domestica Borkhcv.Starkrimson)果实发育过程中,α-淀粉酶活性由低到高,与淀粉含量大致呈现互为消长的变化。Western blotting实验证明,在果实发育过程中,α-淀粉酶的表观数量也是由少到多,与活性的变化一致,利用胶体金免疫电镜定位技术证明,果实发育过程中,α-淀粉酶的珍观数量也是由少到多,与活性的变化一致,利用胶体金免疫电镜定位技术证明,果实内α-淀粉酶主要定位于质体内,其他亚细胞区域内α-淀粉酶分布很少;尤其在果实发育中后期,围绕质体内淀粉粒有高密度的α-淀粉酶分布,说明该酶主要分布于细胞内功能区域,α-淀粉酶优先定位于质体内的亚细胞分布特点在果实整个生长发育期没有变化,随着果实发育的推进,质体内胶体金分布密度显增加,此结果与Western blotting实验相互印证,推测α-淀粉酶参与了果实细胞内质体中淀粉的水解过程。  相似文献   

5.
β-淀粉酶水解淀粉是从淀粉分子的非还原性末端开始,水解相隔的α-1,4-葡萄糖苷键,产生麦芽糖。β-淀粉酶最初发现在高等植物中,特别是大麦、小麦等谷物中。甘薯和大豆中也含有β-淀粉酶。该酶主要用于酿酒和生产饴糖。近几年来,国外有一些关于由微生物产  相似文献   

6.
该研究以宁夏枸杞为材料,对其果实发育过程中果实淀粉含量、淀粉代谢相关酶活性进行测定,并对果实发育过程中果皮细胞内质体超微结构和淀粉组织化学定位进行了系统观察。结果表明:(1)枸杞果实内淀粉含量随果实的发育呈现先增加后降低的变化趋势,在果实花后14d其含量达到最高(13.85mg·g-1)。(2)果实内α淀粉酶活性和β淀粉酶活性随果实发育成熟呈现逐渐增加的趋势,且α淀粉酶活性始终明显高于β淀粉酶活性。(3)组织化学和超微结构研究表明,在果实转色(花后24d)以前果实的造粉体内有大量淀粉粒的存在,但在果实第二次快速生长期,果实内的淀粉粒分解、消失,而叶绿体内没有观察到淀粉粒。研究认为,淀粉是宁夏枸杞果实发育过程中碳水化合物的一种暂时贮存形式,对维持果实早期的库强起到了重要作用,但随着第二次快速生长期果实库强的增加,淀粉体内的淀粉被淀粉酶分解转化为还原糖贮藏在果肉细胞中。  相似文献   

7.
淀粉水解酶广泛用于淀粉加工业中,何秉旺等在选育产耐热β-淀粉酶菌株中得到一株坚强芽孢杆菌(Bacillusfirmus)725,该菌株产生的淀粉酶有较好的热稳定性,水解淀粉的主要产物为麦芽糖。自然菌株产生的淀粉酶往往是多种淀粉酶的混合,为进一步研究该菌株产生的淀粉酶的性质和在工业上应用的可能性,分离了三个淀粉酶基因,在大肠杆菌中克隆和表达[1]。其中重组质粒pBA150产生的淀粉酶的淀粉水解产物主要是麦芽糖[1]。β-淀粉酶(EC.3.2.1.2)水解淀粉的主要产物是麦芽糖,工业上可用于生产高麦芽糖浆,近年来又有β-淀粉酶用于啤酒工业的报道[2]。本文报道重组质粒pBA150的β-淀粉酶基因的序列分析及推导出的氨基酸序列同己知β-淀粉酶的氨基酸序列比较。  相似文献   

8.
嗜碱性芽孢杆菌碱性α淀粉酶的纯化和性质   总被引:1,自引:0,他引:1  
淀粉是高等植物体内碳水化合物的主要储藏形式,广泛存在于谷物、豆类的种子和果实中.α1,4葡聚糖4葡聚糖水解酶(α1,4glucan4glucanohydrolase,EC3.2.1.1),又简称为α淀粉酶(αamylase),能水解淀粉分子内部α1,4葡萄糖苷键,水解产物有糊精、麦芽寡糖、麦芽糖和葡萄糖.它和β淀粉酶、α葡萄糖苷酶、去分枝酶(普鲁兰酶)和异淀粉酶等都属于糖苷水解酶13家族,即α淀粉酶家族[1].α淀粉酶是目前世界上最早生产、产量最大的工业酶制剂品种之一,在食品、纺织、医药和饲料等工业中都有非常重要的应用;其中碱性α淀粉酶常用于洗涤剂和纺织品工业中,…  相似文献   

9.
淀粉水解酶广泛用于淀粉加工业中,何秉旺等在选育产耐热β-淀粉酶菌株中得到一株坚强芽孢杆菌(Bacillusfirmus)725,该菌株产生的淀粉酶有较好的热稳定性,水解淀粉的主要产物为麦芽糖。自然菌株产生的淀粉酶往往是多种淀粉酶的混合,为进一步研究该菌株产生的淀粉酶的性质和在工业上应用的可能性,分离了三个淀粉酶基因,在大肠杆菌中克隆和表达[1]。其中重组质粒pBA150产生的淀粉酶的淀粉水解产物主要是麦芽糖[1]。Β-淀粉酶(EC.3.2.1.2)水解淀粉的主要产物是麦芽糖,工业上可用于生产高麦芽糖浆,近年来又有β-淀粉酶用于啤酒工业的报道[2]。本文报道重组质粒pBA150的β-淀粉酶基因的序列分析及推导出的氨基酸序列同己知β-淀粉酶的氨基酸序列比较。  相似文献   

10.
【背景】生淀粉酶可以水解生淀粉颗粒,在酒精发酵、白酒、黄酒和食醋的生料酿造工业中具有广阔的应用前景。【目的】从自然环境中筛选产生淀粉酶的菌,对其发酵条件及酶性能进行考察,为淀粉生料发酵过程提供优良菌种和酶资源。【方法】取木薯田土壤,经过稀释、热处理、富集培养以及木薯淀粉平板筛选培养基初筛,摇瓶复筛得到产高效降解生淀粉酶的菌株;经过菌落形态、细胞染色观察以及16S rRNA基因序列比对进行鉴定;对筛选菌株的发酵培养基和发酵条件进行优化,并对酶蛋白进行分离纯化和酶学性质分析。【结果】分离到一株具有较高生淀粉酶水解活力的菌株GEL-09,经鉴定为芽胞杆菌Bacillus sp.GEL-09;该菌在最优发酵条件下培养96 h,胞外酶活力达到430.6 U/m L,是优化前的2.8倍;酶学性质分析发现该酶为中温、中性酶,最适温度和p H为50°C和7.0;生淀粉降解能力对比发现,该酶的生淀粉降解能力值为62.3%,显著高于细菌α-淀粉酶、生麦芽糖淀粉酶和甘薯β-淀粉酶对生淀粉的降解能力。【结论】Bacillus sp.GEL-09在生淀粉酶生产方面具有良好的开发应用前景。  相似文献   

11.
用水和木瓜蛋白酶提取的两种大麦β-淀粉酶同工酶在薄层等电聚焦电泳中能分辨出30条酶带,它们的pI在4.4—6.5之间,可以分成3个区(Ⅰ、Ⅱ、Ⅲ区)。水提取的游离态β-淀粉酶同工酶主要集中在Ⅰ区。而用木瓜蛋白酶提取的总β-淀粉酶同工酶主要分布在Ⅱ、Ⅲ区,Ⅰ区较少,它的分布区域与游离态酶的活性有关。37个二棱大麦品种的β-淀粉酶活性差异较大,但根据同工酶的电泳图谱可以分成两种类型,即Ⅰ型和Ⅱ型,两者在酶带数和分布上都有差异。 同一类型的不同品种之间杂交后,酶活性出现明显的杂种优势,但其同工酶的电泳图谱不发生改变。 对β-淀粉酶同工酶电泳类型的多型性及高β-淀粉酶活性在育种上的应用作了简要讨论。  相似文献   

12.
β-葡萄糖醛酸酶(β-Glucuronidase,简称β-G)在正常人体组织匀浆和体液中含量很低,本实验采用胶体金标记,免疫电镜技术,进行了人体正常移行细胞与移行细胞癌细胞内β-G定位研究,实验结果表明,β-G存在于移行细胞和移行细胞癌细胞中的内质网、溶酶体内,同时观察到癌细胞中标记β-G的金颗粒数量多于正常移行细胞中金颗粒的数量,本实验结果可能对于移行细胞癌的早期发现、早期诊断提供了新的依据。  相似文献   

13.
【目的】开发一种新型的大肠杆菌表面展示系统,为C末端截短NCgl1221蛋白作为锚定蛋白提供科学依据,丰富并优化细菌表面展示系统。【方法】扩增C末端截短NCgl1221序列和β-淀粉酶基因,构建融合蛋白表达载体。将重组载体PET-NA和空载体PET-28a分别转入Rosetta(DE3)pLysS中,IPTG诱导表达,SDS-PAGE和Western blot鉴定融合蛋白表达情况。将诱导表达菌株进行免疫荧光染色,荧光显微镜观察和流式细胞分析检测β-淀粉酶的展示。酶活测定和淀粉水解分析验证被展示β-淀粉酶的活性。【结果】融合蛋白成功地在大肠杆菌中表达,有活性的β-淀粉酶通过与锚定蛋白C末端的融合被展示在了宿主菌表面,展示β-淀粉酶的重组菌可以水解利用培养基中的淀粉。【结论】成功开发了一种以C末端截短NCgl1221为锚定蛋白的新型大肠杆菌表面展示系统,并以此系统展示了分子量大小为56 kDa的活性酶,为该系统在全细胞催化剂或吸附剂等方面的应用奠定了基础。  相似文献   

14.
高温放线菌V4菌株(Thermoactinomyces sp.V4)产生的β-淀粉酶最适反应温度为70℃,最适pH为6,酶的热稳定性良好,50℃(4h)不失去酶活力,55℃(2h)保持最初活力的92%,酶对可溶性淀粉的水解率达77%,纸层析结果显示水解产物主要为麦芽糖,经旋光测定,水解产物具有β-构型。巯基抑制剂对此β-淀粉酶无抑制作用。V4菌株同时产生异淀粉酶及少量的-菌一淀粉酶。  相似文献   

15.
β-葡萄糖苷酶能够水解多种β-葡萄糖苷.它与其他纤维素酶共同作用,可以将自然界中含量丰富的纤维素水解成人类可以直接利用的能源物质--葡萄糖;β-葡萄糖苷酶在医学上也有重要的应用,它可用于一些肿瘤疾病的诊断和治疗.人缺乏β-葡萄糖苷酶,可以引起葡萄糖苷-N-脂酰鞘氨醇在巨噬细胞溶酶体内积累,引发戈谢病(Gaucher disease).  相似文献   

16.
β-淀粉酶(EC 3.2.1.2.α-1,4-葡萄糖苷键麦芽糖水解酶),最早发现于高等植物中,在大麦、小麦、甘薯和大豆中含量较丰富;多用于饴糖和酿酒工业。近年来,国外科技工作者从微生物中筛选产β-淀粉酶的菌种,以代替植物来源的β-淀粉酶,用来生产麦芽糖和啤酒。多粘芽孢杆菌(Bacillus polymyxa,  相似文献   

17.
从土壤中分离到两株产β-淀粉酶芽孢杆菌菌株,经紫外线、丫-射线,氯化锂、亚硝基胍等诱变和筛选,得到β-淀粉酶高产菌和耐热性β-淀粉酶产生菌各一株。将两菌进行原生质体融合,获得兼有两亲株遗传特性的融合子wg6。从菌落形态和产酶特性等证实此融合子系两亲株融台所得的杂交子代。W96菌株产酶能力介于两亲株之间,酶的热稳定性较高,60℃处理15min,酶活力仍达93.2%。此菌株还可产生少量茁霉多糖酶(一种支链淀粉酶).与所产生的β-淀粉酶协同作用,使淀粉水解率达到80.6%,因而有较高的应用价值。  相似文献   

18.
王为先  张沁 《遗传学报》1993,20(4):374-380
本工作采用新设计的营养缺陷型淘汰筛选法,从本实验室筛选的芽孢杆菌Bacillus R2中分离到能够水解生淀粉的β-淀粉酶基因。该基因所在的DNA片段为5.25kb,在大肠杆菌(E.coli)中的表达产物具有与供体菌相同的淀粉酶特性,实验室条件下酶产量为500IU/ml以上,RDA值为57%,并且可以全部分泌到培养基中。  相似文献   

19.
对β-硫酸酯乙飘基苯胺(SESA)与环氧氯丙烷交联琼脂糖反应,制得对氨基苯砜乙基(ABSE)交联琼脂糖,经重氯化后与β-淀粉酶偶联制成固定化酶。研究了载体的苯胺基含量、PH)、巯基乙醇等因素对酶偶联反应的影响。尤其是巯基乙醇的存在,可使固定化酶活力明显提高。固定化酶活力可达120u/ml,活力回收为38%,相对活力为45%。固定化β-淀粉酶的最适pH和最遗温度与自然酶相似,以可溶性淀粉为底物时,固定化酶的米氏常数是自然酶(Km=0.0057(%))的8倍。将固定化酶装柱,连续水解可溶性淀粉,在45℃下连续操作;50天后,酶活力未见下降,在50℃下28天后,还保留活力50%左右。  相似文献   

20.
植物β-半乳糖苷酶   总被引:1,自引:0,他引:1  
β-半乳糖苷酶是一个与细胞壁降解相关的酶,广泛分布于植物组织中,参与一系列的生理生化过程,如植物的花粉发育、果实成熟及生长过程中多糖的裂解。目前,已从多种植物中分离到β-半乳糖苷酶基因。β-半乳糖苷酶基因属于多基因家族,随着研究的深入,其不同水平的转录本在不同植物的不同组织中被发现。但目前β-半乳糖苷酶在植物发育中确切的作用机制尚不明确。现介绍目前这一领域内细胞与分子生物学方面的研究进展,并结合所在课题组的研究结果进行相关探讨,为进一步研究β-半乳糖苷酶在植物中的作用机制提供新的线索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号