首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 The cytoplasmic male-sterile (CMS) line CMS-pennellii (BC10P2 L. peruvianum×L. pennellii) and its complex hybrids with L. esculentum were studied. The established sterility was classified as the sporogenous type. As a result of the interaction of the genome of L. pennellii and the cytoplasm of L. peruvianum clear changes were established in the profiles of malic enzyme and esterase. Restriction fragment length polymorphism (RFLP) was detected between the mitochondrial (mt) genomes of CMS-pennellii and the cytoplasm donor, L. peruvianum, for two mtDNA probes: atpA and nad3. The established differences in the isozyme pattern and mt genomes are considered as useful markers to distinguish fertile and sterile plants. A breakthrough in the unilateral incompatibility of CMS-pennellii and the incorporation of the genome of L. esculentum on a CMS background is reported. The analysis of the complex hybrids assumes the interaction of two dominant genes – a maintainer gene from L. pennellii and a restorer gene from cultivated tomato. The hybrids produced with L. esculentum provide the basis for the development of a CMS system in cultivated tomato. Received: 25 May 1998 / Accepted: 26 August 1998  相似文献   

2.
A detailed map of part of the short arm of chromosome 1 proximal to the Cf-4/Cf-9 gene cluster was generated by using an F2 population of 314 plants obtained from the cross between the remotely related species Lycopersicon esculentum and L. peruvianum. Six markers that cosegregate in an L. esculentum×L. pennellii F2 population showed high recombination frequencies in the present interspecific population, spanning an interval of approximately 13?cM. Physical distances between RFLP markers were estimated by pulsed field gel electrophoresis of high-molecular-weight DNA and by identifying YACs that recognized more than one RFLP marker. In this region 1?cM corresponded to 55–110?kb. In comparsion with the value of 730?kb per cM averaged over the entire genome, this reflects the remarkably high recombination frequencies in this region in the hybrid L. esculentum×L. peruvianum progeny population. The present data underline the fact that recombination is not a process that occurs randomly over the entire genome, but can vary dramatically in intensity between chromosomal regions and among populations.  相似文献   

3.
The genetic basis for shoot wilting and root ammonium uptake under chilling temperatures was examined in an interspecific backcross (BC1) population derived from Lycopersicon esculentum Mill. cv T5 and wild Lycopersicon hirsutum f. typicum accession LA1778. The chilling sensitivity of shoot wilting and ammonium uptake was evaluated in four replicated cuttings from each of 196 BC1 plants. Wilting was evaluated at two different times: 2 hours (wilting 2 h) and 6 hours (wilting 6 h recovery) after root exposure to 4°C. The BC1 plants were genotyped with 89 polymorphic RFLP markers, and composite interval mapping was used to detect quantitative trait loci (QTLs). Three QTLs, one each on chromosomes 5, 6 and 9, were detected for wilting 2 h. The presence of a L. hirsutum (H) allele at the QTL on chromosomes 5 and 9 decreased wilting, while the H allele at the QTL on chromosome 6 increased wilting. To analyze plant recovery from wilting at 6 h, subsets of the BC1 population were selected, based on phenotype and genotype, because not all plants wilted at 2 h. The phenotype subset (wilting 6 h-PS) included plants that wilted to a greater degree at 2 h, and the genotype subsets included plants carrying specific allelic compositions at the QTL for wilting 2 h on chromosomes 5 (wilting 6 h-GS-ch5), 6 (wilting 6 h-GS-ch6), and 9 (wilting 6 h-GS-ch9). On chromosome 6, a QTL was located that was associated with three subsets (wilting 6 h-PS, wilting 6 h-GS-ch5 and wilting 6 h-GS-ch9), while on chromosome 7 a QTL was detected with two subsets (wilting 6 h-PS and wilting 6 h-GS-ch5). Three additional QTLs were detected within a single subset: chromosome 1 (wilting 6 h-GS-ch6), chromosome 11 (wilting 6 h-GS-ch5) and chromosome 12 (wilting 6 h-GS-ch9). The presence of the H allele at the QTL on chromosomes 7 and 12 had a positive effect, enhancing recovery from wilting, while the H allele at the other QTL had a negative effect. Three traits were used to evaluate the chilling sensitivity of root ammonium uptake: ammonium uptake before a chilling episode, ammonium uptake after the chilling episode, and the relative inhibition of uptake (difference in uptake rates before and after chilling divided by the rate before chilling). One QTL was detected on chromosome 3 for the rate before chilling and one on chromosome 6 for the relative inhibition of ammonium uptake. Our results demonstrate that shoot wilting and ammonium uptake under chilling are controlled by multiple QTLs. Received: 10 August 1999 / Accepted: 25 March 2000  相似文献   

4.
Most commercial cultivars of tomato, Lycopersicon esculentum Mill., are susceptible to early blight (EB), a devastating fungal (Alternaria solani Sorauer) disease of tomato in the U.S. and elsewhere in the world. Currently, sanitation, long crop rotation, and routine application of fungicides are the most common disease control measures. Although no source of genetic resistance is known within the cultivated species of tomato, resistant resources have been identified within related wild species. The purpose of this study was to identify and validate quantitative trait loci (QTLs) conferring EB resistance in an accession (PI126445) of the tomato wild species L. hirsutum Humb. and Bonpl. by using a selective genotyping approach. A total of 820 BC1 plants of a cross between an EB susceptible tomato breeding line (NC84173; maternal and recurrent parent) and PI126445 were grown in a greenhouse. During late seedling stage, plants were inoculated with mixed isolates of A. solani and subsequently evaluated for EB symptoms. The most resistant (75 plants = 9.1%) and most susceptible (80 = 9.8%) plants were selected and subsequently transplanted into a field where natural infestation of EB was severe. Plants were grown to maturity and evaluated for final disease severity. From among the 75 resistant plants, 46 (5.6% of the total) that exhibited the highest resistance, and from among the 80 susceptible plants, 30 (3.7% of the total) that exhibited the highest susceptibility, were selected. The 76 selected plants, representing the two extreme tails of the response distribution, were genotyped for 145 restriction fragment length polymorphism (RFLP) markers and 34 resistance gene analogs (RGAs). A genetic linkage map, spanning approximately 1298 cM of the 12 tomato chromosomes with an average marker distance of 7.3 cM, was constructed. A trait-based marker analysis (TBA), which measures differences in marker allele frequencies between extreme tails of a population, detected seven QTLs for EB resistance, one on each of chromosomes 3, 4, 5, 6, 8, 10 and 11. Of these, all but the QTL on chromosome 3 were contributed from the resistant wild parent, PI126445. The standardized effects of the QTLs ranged from 0.45 to 0.81 phenotypic standard deviations. Four of the seven QTLs were previously identified in a study where different populations and mapping strategy were used. The high level of correspondence between the two studies indicated the reliability of the detected QTLs and their potential use for marker-assisted breeding for EB resistance. The location of several RGAs coincided with locations of EB QTLs or known tomato resistance genes (R genes), suggesting that these RGAs could be associated with disease resistance. Furthermore, similar to that for many R gene families, several RGA loci were identified in clusters, suggesting their potential evolutionary relationship with R genes.  相似文献   

5.
Quantitative trait loci (QTLs) for several fruit traits in tomato were mapped and characterized in a backcross population of an interspecific cross between Lycopersicon esculentum fresh-marker breeding line NC84173 and L. pimpinellifolium accession LA722. A molecular linkage map of this cross that was previously constructed based on 119 BC1 individuals and 151 RFLP markers was used for the QTL mapping. The parental lines and 119 BC1S1 families (self-pollinated progeny of BC1 individuals) were grown under field conditions at two locations, Rock Spring, PA, and Davis, CA, and fruits were scored for weight (FW), polar (PD) and equatorial diameters (ED), shape (FS), total soluble solids content (SSC), pH and lycopene content (LYC). For each trait, between 4 and 10 QTLs were identified with individual effects ranging between 4.4% and 32.9% and multilocus QTL effects ranging between 39% and 75% of the total phenotypic variation. Most QTL effects were predictable from the parental phenotypes, and several QTLs were identified that affected more than one trait. A few pairwise epistatic interactions were detected between QTL-linked and QTL-unlinked markers. Despite great differences between PA and CA growing conditions, the majority of FW QTLs (78%) and SSC QTLs (75%) in the two locations shared similar genomic positions. Almost all of the QTLs that were identified in the present study for FW and SSC were previously identified in six other studies that used different interspecific crosses of tomato; this indicates conservation of QTLs for fruit traits across tomato species. Altogether, the seven studies identified at least 28 QTLs for FW and 32 QTLs for SSC on the 12 tomato chromosomes. However, for each trait a few major QTLs were commonly identified in 4 or more studies; such ‘popular’ QTLs should be of considerable interest for breeding purposes as well as basic research towards cloning of QTLs. Notably, a majority of QTLs for increased SSC also contributed to decreased fruit size. Therefore, to significantly increase SSC of the cultivated tomato, some compromise in fruit size may be unavoidable. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
7.
L. peruvianum var humifusum is reproductively the most isolated of the species of the genusLycopersicon. It can be crossed with the cultivated tomato usingL. chilense as an intermediary. After a series of backcrosses of the three-genome hybrid F1 (L. esculentum ×L. chilense) ×L. peruvianum var humifusum withL. esculentum, accompanied by selection for resistance to some economically important diseases, several lines were established. One of these lines, Cm 180, which showed resistance toClavibacter michiganensis subsp.michiganensis, was subjected to genetic analysis. This resistance was found to be controlled by a single dominant gene (Cm) that was not allelic to the gene originating fromL. hirsutum f.glabratum. ThisCm gene was genetically mapped on chromosome 4. The germ plasm ofL. peruvianum var humifusum in combination withL. chilense was transferred intoL. esculentum. Different breeding lines possessing resistance to various diseases and pests could be developed from this material.  相似文献   

8.
Summary Asymmetric somatic hybrid plants were recovered after fusing irradiated mesophyll protoplasts of donor Lycopersicon esculentum × L. pennellii (EP) interspecific hybrid with callus-derived protoplasts of recipient Solanum lycopersicoides. EP plant A54 had been previously transformed by an agrobacterium vector, and the T-DNA insert mapped to the L. esculentum chromosome 12. The T-DNA insert conferred kanamycin resistance to EP that was subsequently used to select cell fusion products and recover asymmetric hybrid plants that retained tagged chromosome 12. Doses of 50- and 100-Gy irradiation promoted the elimination of only a few donor chromosomes. At 200 Gy, the regenerated plants had ploidy levels higher than tetraploid. However, the T-DNA tagged chromosome 12 was always retained in the asymmetric hybrid plants tested. Likewise, all plants from the 100-Gy series, with the exception of number 160, were mixoploid in the root-tip cells. Such mixoploid asymmetric somatic hybrids could be stabilized by inducing adventitious shoots on leaf strips cultured on shoot regeneration medium containing kanamycin. The asymmetric hybrid plants did not produce viable seed when self-pollinated or backcrossed to tomato or S. lycopersicoides. Present address: Department of Biology, University College of London, Gower Street, London, UK  相似文献   

9.
This study was conducted to identify randomly amplified polymorphic DNA (RAPD) markers associated with quantitative trait loci (QTLs) conferring salt tolerance during germination in tomato. Germination response of an F2 population (2000 individuals) of a cross between UCT5 (Lycopersicon esculentum, salt-sensitive) and LA716 (L. pennellii, salt-tolerant) was evaluated at a salt-stress level of 175 mM NaCl+17.5 mM CaCl2 (water potential ca. –9.5 bars). Germination was scored visually as radicle protrusion at 6-h intervals for 30 consecutive days. Individuals at both extremes of the response distribution (i.e., salt-tolerants and salt-sensitives) were selected. The selected individuals were genotyped for 53 RAPD markers and allele frequencies at each marker locus were determined. The linkage association among the markers was determined using a “Mapmaker” program. Trait-based marker analysis (TBA) identified 13 RAPD markers at eight genomic regions that were associated with QTLs affecting salt tolerance during germination in tomato. Of these genomic regions, five included favorable QTL alleles from LA716, and three included favorable alleles from UCT5. The approximate effects of individual QTLs ranged from 0.46 to 0.82 phenotypic standard deviation. The results support our previous suggestion that salt tolerance during germination in tomato is polygenically controlled. The identification of favorable QTLs in both parents suggests the likelihood of recovering transgressive segregants in progeny derived from these genotypes. Results from this study are discussed in relation to using marker-assisted selection in breeding for salt tolerance. Received: 16 June 1997 / Revision received: 11 August 1997 / Accepted: 2 September 1997  相似文献   

10.
Andrejić  G.  Gajić  G.  Prica  M.  Dželetović  Ž.  Rakić  T. 《Photosynthetica》2018,56(4):1249-1258
Photosynthetica - Accumulation and distribution of zinc within Miscanthus × giganteus plants grown on elevated Zn concentrations and their photosynthetic performance were investigated. High...  相似文献   

11.
L-leucine plays a central role in the regulation of protein metabolism in heart and has been implicated in myocardial protection, but little is known about the relationship between these phenomena and leucine transport across the cardiac sarcolemma. In this study we used sarcolemmal vesicles and ventricular myocytes isolated from rat heart to characterise L-leucine transport under normal conditions and to investigate the effect of simulated hypoxia or inhibition of protein synthesis. The Km and Vmax of leucine uptake were 5.24+/-0.65 mM and 1.43+/-1.84 nmol min(-1) mg(-1) protein in vesicles compared to 2.17+/-0.13 mM and 1.7+/-0.76 nmol min(-1) microl(-1) intracellular space in cells. Transport was not dependent on Na+ or H+ gradients. In vesicles L-leucine uptake was increased by trans-stimulation, whilst inhibition was observed with classical system L substrates including 2-aminobicyclo[2,2,1]-heptane-2-carboxylic acid (BCH) suggesting that this system mediated L-leucine transport in heart. L-Leucine uptake into isolated cardiac myocytes was inhibited after 20, 30 and 60 min of simulated hypoxia. This was not caused by reduced cell viability, although the cells underwent a rigor contracture. Inhibition of protein synthesis did not affect L-leucine transport.  相似文献   

12.
A new hybrid,Lomariopsis ×farrarii, is illustrated and described from the La Selva Biological Station, Costa Rica. It is intermediate between its parents,L. japurensis andL. vestita in length and color of the rhizome scales, shape and number of the pinnae, and size and division of the juvenile leaves in a heteroblastic series.  相似文献   

13.
Inheritance of resistance to blackmold, a disease of ripe tomato fruit caused byAlternaria alternata, was studied in two interspecific crosses. The parents, F1 and F2 generations of a cross between the susceptibleLycopersicon esculentum Mill. cultivar Hunt 100 and the resistantL. Cheesmanii f.typicum Riley accession LA 422, and the parents, F1, F2, F3, and BC1 P2 generations of a cross between the susceptibleL. Esculentum cv. VF 145B-7879 and LA 422 were evaluated. The following disease evaluation traits were used: symptom rating (a symptom severity rating based on visual evaluation of lesions), diseased fruit (the number of diseased fruits divided by the total number of fruit scored), and lesion size (a function derived from the actual lesion diameter). Generation means analysis was used to determine gene action. The data of the Hunt 100 × LA 422 cross fit an additive-dominance model for all three traits. The VF 145B-7879 × LA 422 cross data best fit a model that included the additive × additive and additive × dominance interaction components for the trait diseased fruit, whereas higher-order epistatic models would have to be invoked to fit the data for the traits symptom rating and lesion size. A minimum of one gene segregated for all three traits. Broad-sense heritability estimates ranged from 0.09 to 0.16 for all three traits, indicating that selection for improved resistance to blackmold will require selection on a family performance basis.  相似文献   

14.
The cumulative ozone effect on morphological parameters (visible leaf injury, plant height and leaf growth, number of bean pods, petunia flowers and stalks) was examined in this study. Well-known ozonesensitive (Bel W3) and ozone-resistant (Bel B) tobacco cultivars as well as bean cv. Nerina and petunia cv. White cascade, both recognized as ozone sensitive, were used in the experiment. Investigations were carried out at two exposure sites varying in tropospheric ozone levels. Ozone negatively affected the leaf growth of both tobacco cultivars and bean. A negative relation was also found for ozone concentration and tobacco plant height. Number of petunia flowers and stalks and bean pods was positively correlated with ozone concentration. This could have been connected with earlier plant maturation due to faster generative development of plants in ozone-stress conditions.  相似文献   

15.
Differences in light quality penetration within a leaf and absorption by the photosystems alter rates of CO2 assimilation in C3 plants. It is also expected that light quality will have a profound impact on C4 photosynthesis due to disrupted coordination of the C4 and C3 cycles. To test this hypothesis, we measured leaf gas exchange, 13CO2 discrimination (Δ13C), photosynthetic metabolite pools and Rubisco activation state in Zea mays and Miscanthus × giganteus under steady‐state red, green, blue and white light. Photosynthetic rates, quantum yield of CO2 assimilation, and maximum phosphoenolpyruvate carboxylase activity were significantly lower under blue light than white, red and green light in both species. However, similar leakiness under all light treatments suggests the C4 and C3 cycles were coordinated to maintain the photosynthetic efficiency. Measurements of photosynthetic metabolite pools also suggest coordination of C4 and C3 cycles across light treatments. The energy limitation under blue light affected both C4 and C3 cycles, as we observed a reduction in C4 pumping of CO2 into bundle‐sheath cells and a limitation in the conversion of C3 metabolite phosphoglycerate to triose phosphate. Overall, light quality affects rates of CO2 assimilation, but not the efficiency of CO2 concentrating mechanism.  相似文献   

16.
The biomass–density relationship (whereby the biomass of individual plants decreases as plant density increases) has generally been explained by competition for resources. Arbuscular mycorrhizal fungi (AMF) are able to affect plant interactions by mediating resource utilization, but whether this AMF-mediated interaction will change the biomass–density relationship is unclear. We conducted an experiment to test the hypothesis that AMF will shift the biomass–density relationship by affecting intraspecific competition. Four population densities (10, 100, 1,000, or 10,000 seedlings per square meter) of Medicago sativa L. were planted in field plots. Water application (1,435 or 327.7 mm/year) simulated precipitation in wet areas (sufficient water) and arid areas (insufficient water). The fungicide benomyl was applied to suppress AMF in some plots (“low-AMF” treatment) and not in others (“high-AMF” treatment). The effect of the AMF treatment on the biomass–density relationship depended on water conditions. High AMF enhanced the decrease of individual biomass with increasing density (the biomass–density line had a steeper slope) when water was sufficient but not when water was insufficient. AMF treatment did not affect plant survival rate or population size but did affect absolute competition intensity (ACI). When water was sufficient, ACI was significantly higher in the high-AMF treatment than in the low-AMF treatment, but ACI was unaffected by AMF treatment when water was insufficient. Our results suggest that AMF status did not impact survival rate and population size but did shift the biomass–density relationship via effects on intraspecific competition. This effect of AMF on the biomass–density relationship depended on the availability of water.  相似文献   

17.
Trees have the ability to respond to local environmental cues by expressing particular phenotypes across their canopy through a mechanism known as intracanopy plasticity. In this study, intracanopy plasticity of Olea europaea subsp. europaea was analyzed by sampling leeward and windward canopy exposures of individuals occurring in an area with sustained strong wind conditions. A suite of morphofunctional and reproductive traits was measured at these contrasting canopy positions and, for comparison, also in wind-protected trees. Furthermore, the pattern of intracanopy plasticity of these plants was compared to that previously documented in a closely related species, Olea europaea subsp. guanchica. Plants exposed to strong winds displayed substantial differences between leeward and windward exposures in most of the study traits. Leeward exposures experienced a mean reduction of 73% in wind speed as compared to windward ones, and displayed a modular phenotype matching that observed in wind-protected plants. Wind-exposed plants, however, were comparatively smaller and had fewer and smaller inflorescences, since inflorescence size was positively associated with crown size. The two closely related species showed similar crown and leaf sizes between populations exposed to strong winds, and intracanopy responses were comparable for most traits. These observations suggest that intracanopy plasticity resulted in the expression of contrasting phenotypes within individuals, which allowed trees to persist under sustained wind stress, although at the cost of a reduced reproductive fitness. In addition, this study gives support to the idea that intracanopy responses are conserved among closely related taxa evolving in different habitats, but experiencing a comparable limiting factor.  相似文献   

18.
Aim of the present work is the analysis (through the study of enzyme polymorphism) of Sicilian and African (Tunisian) populations of Ambrosina bassii, a small perennial endemic to the Central-Western Mediterranean basin, in order to verify if the complex geological history of this part of the Mediterranean area left its mark in the present-day genetic structure of this taxon. Starch gel allozyme electrophoresis of seven putative loci of A. bassii was employed to estimate genetic diversity, genetic structure and gene flow. Populations from Sicily, Tunisia and Sardinia (as outgroup) were sampled. Results show that Sicily populations have 4 private alleles, Sardinia 3, Tunisia just one. One allele is private to both Sardinia and Tunisia, another one to Sardinia and Sicily. Even if there are no alleles private to Sicily and Tunisia, “cluster analysis” (based on Nei's genetic distances), “non-metric multidimensional scaling” (computed on the basis of a matrix with FST values between populations) and Bayesian analysis point out a clear isolation of Sardinian populations, and a greater similarity between Sicilian and Tunisian populations compared to Sardinian ones. The strong genetic affinity between populations from Sicily and Tunisia, considering the very low dispersal ability of the species, gives evidence of a recent continuity between the populations as well as between the two areas. Considering also the estimates of divergence times, a post-Messinian terrestrial connection between the two landmasses can be hypothesized.  相似文献   

19.
Metal-binding thiols, involved in detoxification mechanisms in plant and other organism under heavy metal stress, are receiving more and more attentions, and various methods have been developed to determine related thiols such as cysteine (Cys), glutathione (GSH) and phytochelatins (PCs). In present study, an HPLC method was established for simultaneous determination of Cys GSH and PC(2-6) after treatment with disulfide reductant of tris (2-carboxyethyl) phosphine hydrochloride (TCEP) and thiolyte reagent of monobromobimane (mBBr). The separation of thiol derivatives was performed on an Agilent Zorbax Eclipse XDB-C18 column (4.6 mm × 30 mm, 1.8 μm) with a linear gradient elution of 0.1% (v/v) trifluoroacetic acid (TFA)-acetonitrile (ACN) at 0.8 mL min(-1). The temperature of the column was maintained at 25°C. The excitation and emission wavelengths were set at 380 and 470 nm, respectively. The thiol derivatives were well separated in 19 min, and the total analysis time was 30 min. The established method was proved selective, specific and reproducible, and could be applicable to determine Cys, GSH and PC(2-6) and to evaluate their roles in detoxification mechanisms in Cd-treated Lolium perenne L. under ambient and elevated carbon dioxide (CO(2)). It was found that the total SH contents and proportions of thiols in roots and shoots were dependent on Cd concentration, whereas the total SH contents decreased and the proportions of thiols altered without significance at elevated CO(2) level.  相似文献   

20.
 Growth patterns and nitrogen economy were studied in pot-grown seedlings of mountain birch subjected to different ultraviolet radiation under both laboratory and outdoor conditions at Abisko in northern Sweden. In the laboratory, nutrient supply, temperature, humidity, ultraviolet radiation-A (UV-A, 320–400 nm) and B (UV-B, 280–320 nm) were controlled, while photosynthetically active radiation (PAR, 400–700 nm) and photoperiod varied naturally. Under outdoor conditions nutrient supply was controlled, and the irradiation treatments were ambient and above-ambient UV-B using additional fluorescent lamps. Mountain birch nitrogen economy was affected by increased ultraviolet radiation, as reflected by a changed relationship between plant growth and plant nitrogen both in the laboratory and outdoors. In the laboratory enhanced UV-A decreased leaf area per unit plant biomass (leaf area ratio) but increased biomass productivity, both per unit leaf area (leaf area productivity) and per unit leaf nitrogen (leaf nitrogen productivity). Low levels of UV-B affected growth patterns and nitrogen economy in a similar way to enhanced UV-A. High levels of UV-B clearly decreased relative growth rate and nitrogen productivity, as leaf area ratio, leaf area productivity and leaf nitrogen productivity were all decreased. Under outdoor conditions above-ambient levels of UV-B did not alter growth or biomass allocation traits of the seedlings, whilst nitrogen productivity was increased. Mountain birch seedlings originating from different mother trees varied significantly in their responses to different ultraviolet radiation. Received: 10 April 1997 / Accepted: 19 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号