共查询到20条相似文献,搜索用时 0 毫秒
1.
Coordination between enzyme specificity and intracellular compartmentation in the control of protein-bound oligosaccharide biosynthesis 总被引:2,自引:0,他引:2
H Schachter 《Biology of the cell / under the auspices of the European Cell Biology Organization》1984,51(2):133-145
This laboratory has developed schemes for the control of biosynthesis of N- and O-glycosyl oligosaccharides based on studies in cell-free systems of glycosyl-transferase substrate specificities. These schemes are based on assumptions that may not be universally correct. For example, we have ignored the possible compartmentation of reactions in different cells or in different organelles within a cell. Recent evidence has indicated that the Golgi apparatus has at least three functionally distinct regions (cis, medial and trans). The addition of galactosyl and sialyl residues to the antennae of complex and hybrid N-glycans probably occurs entirely within the trans-cisternae while the N-acetylglucosaminyl-transferases which initiate these antennae appear to be located in a denser region of the Golgi (cis and/or medial cisternae). We have constructed a modified scheme for the biosynthesis of the antennae of N-glycans. This scheme combines our substrate specificity data (H. Schachter, S. Narasimhan, P. Gleeson and G. Vella, 1983, Can. J. Biochem. Cell Biol., 61, 1049-1066) with compartmentation data. It provides a basis for understanding the control of glycoprotein synthesis in normal tissues and in certain lectin-resistant mutant cell lines. 相似文献
2.
3.
Dinant S 《Comptes rendus biologies》2008,331(5):334-346
Phloem plays a major role in carbohydrate partitioning in the plant. It also controls the redistribution of various metabolites such as amino acids, vitamins, hormones, and ions. The molecular mechanisms responsible for phloem loading and unloading have been particularly well characterised, with the identification of sucrose and polyol transporters. The discovery of the role of phloem in the long-distance translocation of macromolecules, proteins, mRNA and small RNA has modified our understanding of the regulation of the coordination of some developmental and adaptation processes. This review details recent results concerning the transport and long-distance signalling that take place in the phloem. 相似文献
4.
Interactions between circadian and hormonal signalling in plants 总被引:1,自引:0,他引:1
5.
J. Horák 《Folia microbiologica》1991,36(1):3-34
Many newly synthesized proteins must be translocated across one or more membranes to reach their destination in the individual organelles or membrane systems. Translocation, mostly requiring an energy source, a signal on the protein itself, loose conformation of the protein and the presence of cytosolic and/or membrane receptor-like proteins, is often accompanied by covalent modifications of transported proteins. In this review I discuss these aspects of protein transport via the classical secretory pathway and/or special translocation mechanisms in the unicellular eukaryotic organism Saccharomyces cerevisiae. 相似文献
6.
Auxin in action: signalling, transport and the control of plant growth and development 总被引:11,自引:0,他引:11
Hormones have been at the centre of plant physiology research for more than a century. Research into plant hormones (phytohormones) has at times been considered as a rather vague subject, but the systematic application of genetic and molecular techniques has led to key insights that have revitalized the field. In this review, we will focus on the plant hormone auxin and its action. We will highlight recent mutagenesis and molecular studies, which have delineated the pathways of auxin transport, perception and signal transduction, and which together define the roles of auxin in controlling growth and patterning. 相似文献
7.
Calcium signalling: dynamics,homeostasis and remodelling 总被引:1,自引:0,他引:1
Ca2+ is a highly versatile intracellular signal that operates over a wide temporal range to regulate many different cellular processes. An extensive Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics. Rapid highly localized Ca2+ spikes regulate fast responses, whereas slower responses are controlled by repetitive global Ca2+ transients or intracellular Ca2+ waves. Ca2+ has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease. 相似文献
8.
B G Munck 《Biochimica et biophysica acta》1970,203(3):424-433
9.
Nitrate transport and compartmentation in cereal root cells 总被引:31,自引:6,他引:31
Measurement of cytosolic nitrate is one of the factors requiredfor the resolution of factors controlling nitrate uptake andassimilation in plants and for identifying likely nitrate transportmechanisms at both the plasma membrane and tonoplast. This paperreviews methods and reported measurements of cytosolic nitratein higher plants and concludes that nitrate-selective microelectrodesare the best approach. These microelectrodes have been usedto measure intracellular nitrate activities in barley and maizeroot cells. Triplebarrelled electrodes, incorporating a pH-sensingbarrel have been used to identify the compartmental locationof the nitrate-selective tip giving unequivocal estimates ofvacuolar and cytosolic nitrate activities. The microelectrodemeasurements are used to discuss the possible mechanisms ofnitrate transport at both the tonoplast and plasma membrane.The energetics of possible proton-coupled transport systemsare described and the feasibility of the mechanism is discussed. Key words: Cytosol, compartmentation, Hordeum vulgare L, nitrate, roots, Zea mays L 相似文献
10.
11.
Genetic and pharmacological studies have shown that the central melanocortin system plays a critical role in the regulation of energy homeostasis. Animals and humans with defects in the central melanocortin system display a characteristic melanocortin obesity phenotype typified by increased adiposity, hyperphagia, metabolic defects and increased linear growth. In addition to interacting with long-term regulators of energy homeostasis such as leptin, more recent data suggest that the central melanocortin system also responds to gut-released peptides involved in mediating satiety. In this review, we discuss the interactions between these systems, with particular emphasis on cholecystokinin (CCK), ghrelin and PYY(3-36). 相似文献
12.
Interactions between plant circadian clocks and solute transport 总被引:1,自引:0,他引:1
13.
Schrick K Mayer U Martin G Bellini C Kuhnt C Schmidt J Jürgens G 《The Plant journal : for cell and molecular biology》2002,31(1):61-73
The sterol biosynthesis pathway of Arabidopsis produces a large set of structurally related phytosterols including sitosterol and campesterol, the latter being the precursor of the brassinosteroids (BRs). While BRs are implicated as phytohormones in post-embryonic growth, the functions of other types of steroid molecules are not clear. Characterization of the fackel (fk) mutants provided the first hint that sterols play a role in plant embryogenesis. FK encodes a sterol C-14 reductase that acts upstream of all known enzymatic steps corresponding to BR biosynthesis mutants. Here we report that genetic screens for fk-like seedling and embryonic phenotypes have identified two additional genes coding for sterol biosynthesis enzymes: CEPHALOPOD (CPH), a C-24 sterol methyl transferase, and HYDRA1 (HYD1), a sterol C-8,7 isomerase. We describe genetic interactions between cph, hyd1 and fk, and studies with 15-azasterol, an inhibitor of sterol C-14 reductase. Our experiments reveal that FK and HYD1 act sequentially, whereas CPH acts independently of these genes to produce essential sterols. Similar experiments indicate that the BR biosynthesis gene DWF1 acts independently of FK, whereas BR receptor gene BRI1 acts downstream of FK to promote post-embryonic growth. We found embryonic patterning defects in cph mutants and describe a GC-MS analysis of cph tissues which suggests that steroid molecules in addition to BRs play critical roles during plant embryogenesis. Taken together, our results imply that the sterol biosynthesis pathway is not a simple linear pathway but a complex network of enzymes that produce essential steroid molecules for plant growth and development. 相似文献
14.
Franch-Marro X Marchand O Piddini E Ricardo S Alexandre C Vincent JP 《Development (Cambridge, England)》2005,132(4):659-666
The two glypicans Dally and Dally-like have been implicated in modulating the activity of Wingless, a member of the Wnt family of secreted glycoprotein. So far, the lack of null mutants has prevented a rigorous assessment of their roles. We have created a small deletion in the two loci. Our analysis of single and double mutant embryos suggests that both glypicans participate in normal Wingless function, although embryos lacking maternal and zygotic activity of both genes are still capable of transducing the signal from overexpressed Wingless. Genetic analysis of dally-like in wing imaginal discs leads us to a model whereby, at the surface of any given cell of the epithelium, Dally-like captures Wingless but instead of presenting it to signalling receptors expressed in this cell, it passes it on to neighbouring cells, either for paracrine signalling or for further transport. In the absence of dally-like, short-range signalling is increased at the expense of long-range signalling (reported by the expression of the target gene distalless) while the reverse is caused by Dally-like overexpression. Thus, Dally-like act as a gatekeeper, ensuring the sharing of Wingless among cells along the dorsoventral axis. Our analysis suggests that the other glypican, Dally, could act as a classical co-receptor. 相似文献
15.
Recent evidence has revealed the importance of reciprocal functional interactions between different types of mononuclear cells in coordinating the repair of injured muscles. In particular, signals released from the inflammatory infiltrate and from mesenchymal interstitial cells (also known as fibro-adipogenic progenitors (FAPs)) appear to instruct muscle stem cells (satellite cells) to break quiescence, proliferate and differentiate. Interestingly, conditions that compromise the functional integrity of this network can bias muscle repair toward pathological outcomes that are typically observed in chronic muscular disorders, that is, fibrotic and fatty muscle degeneration as well as myofiber atrophy. In this review, we will summarize the current knowledge on the regulation of this network in physiological and pathological conditions, and anticipate the potential contribution of its cellular components to relatively unexplored conditions, such as aging and physical exercise. 相似文献
16.
Interactions between retinoic acid, nerve growth factor and sonic hedgehog signalling pathways in neurite outgrowth 总被引:1,自引:0,他引:1
So PL Yip PK Bunting S Wong LF Mazarakis ND Hall S McMahon S Maden M Corcoran JP 《Developmental biology》2006,298(1):167-175
Many studies have shown a role of retinoid signalling in neurite outgrowth in vitro, and that the retinoic acid receptor (RAR) beta2 is critical for this process. We show here that RARbeta2 is expressed predominantly in dorsal root ganglia (DRG) neuronal subtypes that express neurofilament (NF) 200 and calcitonin gene-related peptide (CGRP), and that these neurons extend neurites in response to RA. We demonstrate that retinoid signalling has a role in neurite outgrowth in vivo, by showing that in a peripheral nerve crush model there is less neurite outgrowth from RARbeta null DRG compared to wild-type. We identify sonic hedgehog (Shh) as a downstream target of the RARbeta2 signalling pathway as it is expressed in the injured DRG of wild-type but not RARbeta null mice. This regulation is direct as when RARbeta2 is overexpressed in adult motoneurons Shh is induced in them. Finally we show that Shh alone cannot induce neurite outgrowth but potentiates RARbeta2 signalling in this process. 相似文献
17.
Rathinam ML Watts LT Stark AA Mahimainathan L Stewart J Schenker S Henderson GI 《Journal of neurochemistry》2006,96(5):1289-1300
Ethanol increases apoptotic neuron death in the developing brain and at least part of this may be mediated by oxidative stress. In cultured fetal rat cortical neurons, Ethanol increases levels of reactive oxygen species (ROS) within minutes of exposure and reduces total cellular glutathione (GSH) shortly thereafter. This is followed by onset of apoptotic cell death. These responses to Ethanol can be blocked by elevating neuron GSH with N-acetylcysteine or by co-culturing neurons with neonatal cortical astrocytes. We describe here mechanisms by which the astrocyte-neuron gamma-glutamyl cycle is up-regulated by Ethanol, enhancing control of neuron GSH in response to the pro-oxidant, Ethanol. Up to 6 days of Ethanol exposure had no consistent effects on activities of gamma-glutamyl cysteine ligase or glutathione synthetase, and GSH content remained unchanged (p < 0.05). However, glutathione reductase was increased with 1 and 2 day Ethanol exposures, 25% and 39% for 2.5 and 4.0 mg/mL Ethanol by 1 day, and 11% and 16% for 2.5 and 4.0 mg/mL at 2 days, respectively (p < 0.05). A 24 h exposure to 4.0 mg/mL Ethanol increased GSH efflux from astrocyte up to 517% (p < 0.05). Ethanol increased both gamma-glutamyl transpeptidase expression and activity on astrocyte within 24 h of exposure (40%, p = 0.05 with 4.0 mg/mL) and this continued for at least 4 days of Ethanol treatment. Aminopeptidase N activity on neurons increased by 62% and 55% within 1 h of Ethanol for 2.5 and 4.0 mg/mL concentration, respectively (p < 0.05), remaining elevated for 24 h of treatment. Thus, there are at least three key points of the gamma-glutamyl cycle that are up-regulated by Ethanol, the net effect being to enhance neuron GSH homeostasis, thereby protecting neurons from Ethanol-mediated oxidative stress and apoptotic death. 相似文献
18.
Interactions between inhibin, oestradiol and progesterone in the control of gonadotrophin secretion in the ewe 总被引:2,自引:0,他引:2
Experiments were carried out to test the hypothesis that inhibin and oestradiol act synergistically to inhibit the secretion of FSH, to test for effects of progesterone, and to compare the FSH and LH responses to ovarian feedback. In Exp. 1, with 11 ovariectomized and 12 intact Romanov ewes during the anoestrous season, doses of oestradiol (administered by means of subcutaneous implants) that restored normal LH pulse frequencies were insufficient to restore normal concentrations of FSH. In Exp. 2, with 48 ovariectomized Welsh Mountain ewes during the breeding season, a factorial design with 4 ewes per cell was used to assess the responses in LH and FSH to 3 doses of oestradiol (s.c. implants) and 4 doses of bovine follicular fluid ('inhibin', 0.2-1.6 ml s.c. every 8 h). This was done initially in the absence of progesterone and then after 7 days of treatment with progesterone (s.c. implants). Analysis of variance revealed a significant synergistic interaction between oestradiol and inhibin on the plasma concentrations of FSH. Progesterone had little effect. In contrast, there was a significant synergistic interaction between oestradiol and progesterone on the concentrations of LH. 'Inhibin' also inhibited LH secretion but this effect was independent of the two steroids. We conclude that there are basic differences in the way that ovarian feedback acts to control the secretion of LH and FSH in the ewe. FSH secretion appears to be primarily controlled by the synergistic action of oestradiol and inhibin on the anterior pituitary gland, while the secretion of LH is inhibited during the follicular phase by an effect of oestrogen at pituitary level and during the luteal phase by the synergistic action of oestradiol and progesterone at the hypothalamic level. Inhibin, or another non-steroidal factor in follicular fluid, may also play a minor role in the control of LH secretion. 相似文献
19.
E Kohen C Kohen J G Hirschberg A W Wouters B Thorell H V Westerhoff K K Charyulu 《Cell biochemistry and function》1983,1(1):3-16
Microspectrofluorometry of cell coenzymes (NAD(P)H, flavins) in conjunction with sequential microinjections into the same cell of metabolites and modifiers, reveals aspects of the regulatory mechanisms of transient redox changes of mitochondrial and extramitochondrial nicotinamide adenine dinucleotides. The injection of ADP in the course of an NAD(P)H transient produced by glycolytic (e.g. glucose 6-phosphate, G6P) or mitochondrial (e.g. malate) substrate leads to sharp reoxidation (state III, Chance and Williams, 1955), followed by a spontaneous state III to IV transition, and an ultimate return to original redox steady state. The response to ADP alone is biphasic, i.e. a small oxidation-reduction transient followed by a larger reverse transient. Similarities between responses to injected ATP and ADP suggest possible intracellular interconversions. Sequential injections of glycolytic and Krebs cycle substrates into the same cell, produce a two-step NAD(P) response, possibly revealing the intracellular compartmentation of this coenzyme. A two-step NAD(P)H response to sequentially injected fructose 1,6-diphosphate and G6P indicates the dynamic or even structural compartmentation of glycolytic phosphate esters in separate intracellular pools. The intracellular regulation and compartmentation of bioenergetic pathways and cell-to-cell metabolic inhomogeneities provide the basis on which the quantitative biochemistry of the intact living cell may be reconciled with these in situ findings. 相似文献