首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron microscopical analysis of Drosophila polytene chromosomes   总被引:2,自引:0,他引:2  
Data are presented of electron microscopic (EM) analysis of consecutive developmental stages of Drosophila melanogaster complex puffs, formed as a result of simultaneous decondensation of several bands. EM mapping principles proposed by us permitted more exact determination of the banding patterns of 19 regions in which 31 puffs develop. It is shown that 20 of them develop as a result of synchronous decondensation of two bands, 7 of three and 4 of one band. Three cases of two-band puff formation when one or both bands undergo partial decondensation are described. In the 50CF, 62CE, 63F and 71CF regions puffing zones are located closely adjacent to each other but the decondensation of separate band groups occurs at different puff stages (PS). These data are interpreted as activation of independently regulated DNA sequences. The decondensation of two or three adjacent bands during formation of the majority of the puffs occurs simultaneously in the very first stages of their development. It demonstrates synchronous activation of the material of several bands presumably affected by a common inductor. Bands adjacent to puffing centres also lose their clarity as the puff develops, probably due to "passive" decondensation connected with puff growth. The morphological data obtained suggest a complex genetic organisation of many puffs.  相似文献   

2.
Replication studies on prophasic human Y chromosomes reveal 4 early replicating segments in the euchromatic portion. The distal segment of Yp replicates first. After replication of the euchromatic part is almost finished 3 to 5 segments start replication in the heterochromatic portion of Yq. These segments exhibit considerable intraindividual variation with respect to the origin of onset of replication. While the location of these bands — once they are differentiated — is fixed within one individual, the number of these bands varies interindividually.Dedicated to Professor Dr. Ulrich Wolf on the occasion of his 50the birthday  相似文献   

3.
Mapping of 16 regions of polytene chromosomes in which 18 one-band puffs develop was carried out with the use of electron microscopy (EM). In most cases a uniform decondensation of the whole band was observed. However, there were examples in which only a part of the band was activated (three puffs) or its right and left parts decondensed simultaneously (three puffs). Splitting of the band into two parts with their further decondensation was also found (one puff). This suggests structural and functional complexity of the bands. On the basis of the data obtained here and those published earlier, a classification of 52 puffs by the number of bands participating in their formation is given. Four classes numbering 22, 21, 7, 2 puffs, developing from 1, 2, 3 and 4 bands, respectively, are revealed. The data show that active chromosome regions are rather diverse in both the pattern of decondensation and expansion of the decondensed region, thus providing evidence of the informational complexity of the majority of active regions.  相似文献   

4.
An electron microscopic (EM) analysis was performed on regions of Drosophila melanogaster polytene chromosomes that contain inserted DNA segments of 19 and 8 kb. These segments had been inserted by P-elementmediated transformation. The 19 kb segment includes both the Drosophila hsp70 gene fused to the Escherichia coli -galactosidase gene and the rosy gene (Lis et al. 1983). This insert generates a new moderate-size band at the 9D4-9E1-2 region in polytene chromosomes. Upon heat shock, a puff originates from a portion of the new band. The 8 kb segment includes the Sgs7 and Sgs3 genes (Richards et al. 1983). This insert generates very diffuse thin bands that decondense at the stage of activation of the Sgs genes to produce wide interbands or small puffs. In all of the above cases, the insertion appears to occur at interband regions, and the genetically complex DNA segments that are inserted generate only a single detectable band.  相似文献   

5.
Surface-spread polytene (SSP) chromosomes of salivary glands from late third-instar larvae were used for the construction of an electron microscopic (EM) photo map of the entire genome of D. hydei. In comparison with the light microscopic chromosome map of Berendes (1963), based on squash preparations, the EM micrographs depict some 40%–50% more bands. — Two different types of chromosome constrictions are described. One type is assumed to be caused by differential distribution of chromosomal proteins; the other one appears to represent underreplicated sections in the salivary gland chromosomes.Dedicated to Prof. Dr. H.J. Becker on the occasion of his 60th birthday  相似文献   

6.
The ultrastructure of polytene chromosomes of Drosophila and Stylonychia were compared in whole-mount spread preparations. In Drosophila the chromomeres appear as dense, unresolvable structures interconnected by 10-nm interband fibers. In contrast, chromomeres of Stylonychia polytene chromosomes are formed by aggregates of 30-nm loops laterally attached to 10-nm interband fibers. It is suggested that the polytene chromosomes in these two species are analogous rather than homologous structures.  相似文献   

7.
Incorporation of 3H-uridine into three chromosome regions 21D, 100AB, 7EF showing no puffs was studied by means of EM autoradiography. These regions show rather good coincidence between EM and Bridges' revised maps. The reduction of band number observed in the EM map was mainly at the expense of “doublet” bands. — Theoretical silver grain distributions were calculated on the basis of “universal curves” (Salpeter et al., 1969, J. Cell Biol. v. 41, 1–20) on condition that either bands or interbands are linear sources of radioactivity. From these curves the resolution of EM autoradiography was deduced to be sufficient with regard to the investigated region. — The results show that in addition to the puffs peaks of silver grains occur over the interbands and diffuse bands. The lowest incorporation level is observed over the dense bands. The possibility of utilizing the data obtained for the location of RNA-synthesising regions is discussed.  相似文献   

8.
9.
It is reported that chromatin can be prepared from highly purified polytene nuclei from the salivary glands of third instar larvae of Drosophila hydei; such chromatin differs from that of diploid nuclei mainly by deficiencies in certain nonhistone chromosomal proteins. It is suggested that these proteins are important components of constitutive heterochromatin, which is severely underrepresented in polytene chromosomes. Chromosome morphology, including the pattern of induced puffs, is maintained throughout the mass isolation of glands and sucrose gradient purification of nuclei, as indicated by studies on temperature-shocked and control larvae. No significant alteration in the chromosomal proteins following puff induction by heat shock could be detected on analysis of the isolated protein fractions by disc gel electrophoresis. More sensitive techniques must be developed to study the apparent rearrangement or accumulation of protein at puff sites, and to elucidate the role of this protein in gene activation.  相似文献   

10.
11.
We have analyzed the three-dimensional structural details of Drosophila melanogaster polytene chromosome bands and interbands using three- dimensional light microscopy and a novel method of sample preparation that does not involve flattening or stretching the chromosomes. Bands have been visualized in unfixed chromosomes stained with the DNA specific dye 4,6-Diamidino-2-phenylindole (DAPI). Interbands have been visualized using fixed chromosomes that have been immunostained with an antibody to RNA polymerase II. Additionally, these structures have been analyzed using in situ hybridization with probes from specific genetic loci (Notch and white). Bands are seen to be composed of approximately 36 substructural features that measure 0.2-0.4 micron in diameter. We suggest that these substructural features are in fact longitudinal fibers made up of bundles of chromatids. Band shape can be a reproducible characteristic of a particular band and is dependent on the spatial relationship of these bundles, varying from bands with a uniform distribution of bundles to bands with a peripheral concentration of chromatin. Interbands are composed of bundles of chromatids of a similar size and number as those seen in the bands. The distribution of bundles is similar between a band and the neighboring interband, implying that there is a long range organization to the DNA that includes both the coding and the noncoding portions of genes. Finally, we note that the polytene chromosome has a circular shape when viewed in cross section, whether there are one or two homologs present.  相似文献   

12.
A photographic map of polytene chromosomes of Drosophila hydei has been constructed after applying microdissection techniques.  相似文献   

13.
A study of the salivary gland chromosomes of two strains of Drosophila auraria has revealed a suprisingly high number of inverted tandem duplications and one triplication. The possible origin and significance of these are discussed.  相似文献   

14.
The N-banding patterns of the polytene chromosomes of Drosophila melanogaster, Chironomus melanotus, Ch. th. thummi and Ch. th. thummi x Ch. th. piger were studied. In Chironomus the polytene N-banding patterns correspond to the polytene puffing patterns. This is revealed by comparison of the puffing and N-banding patterns of identical chromosomes. Size and staining intensity of the N-bands reflect the size of the puffs as shown by puff induction. There is no evidence that the N-bands are also located in Chironomus heterochromatin or are restricted to the nucleolar organizer regions. In Drosophila the -heterochromatin is strongly N-positive, whereas the -heterochromatin, as well as the Chironomus heterochromatin is not N-banded. Contrary to Chironomus, the puffs in Drosophila polytene chromosomes do not give rise selectively to well stained N-bands. — The N-banding method is interpreted to stain specifically non-histone protein which is (1) accumulated in genetically active chromosome regions and (2) present in a specific type of heterochromatin (-heterochromatin of Drosophila).  相似文献   

15.
16.
17.
Whole-mounted polytene chromosomes were isolated from nuclei by microdissection in 60% acetic acid and analyzed by electron microscopy. Elementary chromosome fibers in the interchromomeric regions and individual chromomeres can be distinguished in polytene chromosomes at low levels of polyteny (26–27 chromatids). Elementary fibers in the interbands are oriented parallel to the axis of the polytene chromosome. Their number roughly corresponds to the expected level of polyteny. These fibers have an irregular beaded structure, 100–300 Å in diameter, and there is no apparent lateral association between them in the interchromomeric regions. Most bands, in contrast, form continuous structures crossing the entire width of the chromosome. Polytene chromosomes isolated in 2% or 10% acetic acid can be reversibly dispersed in a solution for chromatin spreading. The spread chromosomes consist of long uniform deoxyribonucleoprotein (DNP) fibers with a nucleosome structure. This supports the notion that continuous DNA molecules extend through the entire length of a polytene chromosome and that the nucleosome structure exists both in bands and interbands. Analysis of the band shape and of the fibrillar pattern in the interbands emphasizes that the polytene chromosome assumes a ribbonlike structure from which the more complex three-dimensional structure of the polytene chromosome at higher levels of polyteny develops.  相似文献   

18.
19.
A photographic map of salivary gland polytene chromosomes of Drosophila madeirensis has been constructed showing homologies and differences with respect to the standard gene arrangement of D. subobscura. Only two paracentric inversions in the X chromosome and some slight minor dissimilarities of one or two bands in the autosomes differentiate the chromosomes of these species.  相似文献   

20.
Summary The cytochemical properties of a guanine-specific synthetic fluorescent analogue of actinomycin D, 7-amino-actinomycin D, have been studied in fixed and living preparations of L cells and polytene chromosomes of salivary glands ofChironomus thummi thummi andDrosophila lummei (Hackman).7-Amino-actinomycin D has been shown to bind to DNA-containing structures, thereby inducing in them a bright red fluorescence. No specific fluorescence has been found in RNA-containing structures treated with this fluorescent probe.The fluorescence pattern of some regions of polytene chromosomes with a known nucleotide composition was analysed. It has been established that 7-amino-actinomycin D induces a very weak fluorescence in GC-poor chromosome regions of theDrosophila lummei toromere structure. Data indicating a nonlinear dependence between the fluorescence intensity of a stained chromosome region and the GC content in its DNA have been obtained. The influence of DNA nucleotide composition in a chromosome region on the fluorescence of 7-amino-actinomycin D is discussed. In combination with quinacrine staining and the Feulgen fluorescence reaction, treatment with 7-amino-actinomycin D provides useful information about the distribution of GC base pairs in the chromosome region under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号