首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane-active peptide,Pyrularia thionin, purified fromPyrularia pubera, was covalently conjugated to an anti-CD5 monoclonal antibody. The membrane-active properties of thionin were not affected by the conjugation. The immunotoxin killed CD5+ lymphocytes in vitro at a concentration of 0.1 nmol/107 cells after 2 h of incubation. The immunotoxin also inhibited the proliferation of T cells in vitro, stimulated either by mitogens or in the mixed lymphocyte reaction. It was shown by electron paramagnetic resonance of spin probes and differential scanning calorimetry that the ability of the immunotoxin to perturb the lipid phase of membranes is close to that of unconjugated thionin. The results obtained suggest thatPyrularia-thionin—anti-CD5 conjugate may be useful for graft-versus-host disease therapy and potentially in the treatment of CD5+ leukemia and lymphomas.  相似文献   

2.
目的:通过建立一理想的动物模型来模拟T细胞急性淋巴细胞白血病的发病状态,为探索急性淋巴细胞白血病全新的治疗方法提供平台。方法:采用抗鼠-CD122抗体注射NOD/SCID小鼠进行预处理,通过尾静脉注射9例不同病例的白血病细胞,以及1株T-ALL细胞系。通过检测小鼠体内白血病细胞及脏器白血病细胞浸润情况,观察白血病细胞植入。将白血病细胞进行二次移植,观察移植稳定性。对白血病动物模型进行药物处理,观察小鼠生存期,模拟人体治疗反应。结果:有4例病例的细胞及T-ALL细胞株成功植入。流式细胞检测显示受体小鼠体内较多比例人CD45+细胞表达,免疫组化显示CD45+细胞浸润小鼠不同脏器,系列移植也获得成功。体内药物处理显示地塞米松能延长小鼠的生存期,与临床观察相一致。结论:成功建立经抗鼠CD122单抗预处理的人T细胞急性淋巴细胞白血病NOD/SCID小鼠模型,具有原发疾病的所有主要特征。  相似文献   

3.
An anti-CD5 monoclonal antibody (mAb) was linked to the plant toxin momordin, a type-1 ribosome-inactivating protein purified fromMomordica charantia. The in vitro cytotoxicity of the immunotoxin was evaluated as the inhibition of protein and/or DNA synthesis on isolated peripheral blood mononuclear cells (PBMC) and on human T cell leukemia Jurkat. The potency of the immunotoxin on PBMC was very high (IC50 = 1–10 pM) and was not affected by blood components. The conjugate was also very efficient in the inhibition of the proliferative response in a mixed lymphocyte reaction (IC50 = 10 pM). Moreover, the in vitro performances of the immunotoxin compared favourably with those reported for other anti-CD5-based immunoconjugates containing ricin A chain. The in vivo activity of the immunotoxin was assessed in the model ofnu/nu mice bearing Jurkat leukemia. A significant inhibition of the tumour development (80%,P <0.01) in the animals treated with immunotoxin was observed. Taken together, the in vitro and in vivo results suggest that the anti-CD5-momordin conjugate may be useful for graft-versus-host disease therapy and potentially in the treatment of CD5-positive leukemias and lymphomas.  相似文献   

4.
Immunocytokines (IC), consisting of tumor-specific monoclonal antibodies fused to the immunostimulatory cytokine interleukin 2 (IL2), exert significant antitumor effects in several murine tumor models. We investigated whether intratumoral (IT) administration of IC provided enhanced antitumor effects against subcutaneous tumors. Three unique ICs (huKS-IL2, hu14.18-IL2, and GcT84.66-IL2) were administered systemically or IT to evaluate their antitumor effects against tumors expressing the appropriate IC-targeted tumor antigens. The effect of IT injection of the primary tumor on a distant tumor was also evaluated. Here, we show that IT injection of IC resulted in enhanced antitumor effects against B16-KSA melanoma, NXS2 neuroblastoma, and human M21 melanoma xenografts when compared to intravenous (IV) IC injection. Resolution of both primary and distant subcutaneous tumors and a tumor-specific memory response were demonstrated following IT treatment in immunocompetent mice bearing NXS2 tumors. The IT effect of huKS-IL2 IC was antigen-specific, enhanced compared to IL2 alone, and dose-dependent. Hu14.18-IL2 also showed greater IT effects than IL2 alone. The antitumor effect of IT IC did not always require T cells since IT IC induced antitumor effects against tumors in both SCID and nude mice. Localization studies using radiolabeled 111In-GcT84.66-IL2 IC confirmed that IT injection resulted in a higher concentration of IC at the tumor site than IV administration. In conclusion, we suggest that IT IC is more effective than IV administration against palpable tumors. Further testing is required to determine how to potentially incorporate IT administration of IC into an antitumor regimen that optimizes local and systemic anticancer therapy.  相似文献   

5.
Summary Monoclonal antibody WT1 (anti-CD7), conjugated to ricin A chain, was administered intrathecally to rhesus monkeys to test its suitability for use in the therapy of leukemic meningitis. The WT1-SMPT-dgRTA conjugate was cytotoxic to CEM (T-lymphoblastic leukemia) cells in vitro with an ID50 of 53 pM. Immunoperoxidase testing showed no binding of WT1 to normal human tissues other than lymph nodes. Thirteen animals received one or more intrathecal 60-g doses of WT1-SMPT-dgRTA. All monkeys receiving repeated doses developed a cerebrospinal fluid (CSF) pleocytosis (primarily eosinophils), which was generally resolving by 3–4 weeks after therapy. Pharmacokinetic studies showed a half-life of 99 min, consistent with CSF clearance by bulk flow. Peak CSF immunotoxin concentrations exceeded the ID50 for CEM cells by more than 2 log units and a concentration exceeding the ID50 was maintained for as long as 24 h. All eight monkeys receiving repeated doses of immunotoxin developed serum antibodies against both WT1 and ricin A chain. In six of these monkeys antibodies were also present in the CSF. Both anti-WT1 and anti-(ricin A chain) antibodies were able to inhibit in vitro cytotoxicity of the immunotoxin for CEM cells; however, only anti-WT1 antibodies could block immunotoxin binding to the cell surface. No monkey developed anti-immunotoxin antibodies fewer than 7 days after the initiation of therapy, suggesting that repeated doses could be administered for up to 1 week without inhibition of clinical activity.  相似文献   

6.
Summary We prepared an immunoconjugate consisting of a monoclonal antibody recognizing the Thy-1 antigen and the ribosome-inactivating protein gelonin linked by a disulfide bond. This immunotoxin preparation was judged to contain less than 5% free antibody or gelonin. It was highly toxic in vitro in an antigen-specific fashion to the Thy-1 expressing RADA leukemia of A/J mice. The IC50 of this preparation on RADA in vitro was 10–12 M, while the IC50 on the Thy-1 negative S1509a fibrosarcoma of A/J mice was 10–7 M. The toxicity of this immunoconjugate was also measured in a direct proliferation assay and it was found that a 4-h exposure and a 24-h exposure of RADA cells to a 1 nM concentration of immunotoxin killed 90% and 99.9% of cells, respectively. Furthermore, efficacy in vitro was not due to the intrinsic susceptibility of RADA cells to tis type of immunotoxin, as one prepared with gelonin and an antibody recognizing the TLa determinant on this leukemia had no efficacy in vitro. Clearance of the anti-Thy-1-gelonin immunoconjugate from the circulation of A/J mice after i.v. injection was rapid, especially during the first 8 h after injection, possibly because of binding to Thy-1 expressing tissue. Delivery of immunoconjugate to ascitic tumor in vivo was substantially better if the immunoconjugate was given by i.p. injection, rather than by the i.v. route. When given either i.v. or i.p. at the time of i.p. tumor inoculation in vivo, the anti-Thy-1-gelonin immunotoxin showed potency in an antigen-specific fashion; while this immunoconjugate prolonged survival and frequently cured RADA-inoculated mice, neither anti-Thy-1 antibody, gelonin, a combination of the two, nor immunotoxin of irrelevant specificity had any significant effect on survival. Anti-Thy-1-gelonin also had no effect on survival of A/J mice inoculated i.p. with S1509a. Furthermore, it was determined that a single i.p. dose of anti-Thy-1-gelonin killed 90% to 99% cells in vivo, and that the immunoconjugate was about as effective in this model as either adriamycin or cytoxan.This work was supported by ImmunoGen Inc. and in part by a grant from the National Institutes of Health, CA-14723  相似文献   

7.
Summary The severe combined immunodeficient (SCID) mouse, lacking functional T and B lymphocytes, has been considered by many groups to be a prime candidate for the reconstitution of a human immune system in a laboratory animal. In addition, this immuno-deficient animal would appear to have excellent potential as a host for transplanted human cancers, thus providing an exceptional opportunity for the study of interactions between the human immune system and human cancer in a laboratory animal. However, because this animal model is very recent, few studies have been reported documenting the capability of these mice to accept human cancers, and whether or not the residual immune cells in these mice (e.g. natural killer, NK, cells; macrophages) possess antitumor activities toward human cancers. Thus, the purpose of this study was (a) to determine whether or not a human breast carcinoma cell line (MCF-7) can be successfully transplanted to SCID mice, (b) to determine whether or not chronic treatment of SCID mice with a potent lymphokine (recombinant interleukin-2, rIL-2) could alter MCF-7 carcinoma growth, and (c) to assess whether or not rIL-2-activated NK cells (LAK cells) are important modulators of growth of MCF-7 cells in SCID mice. To fulfill these objectives, female SCID mice were implanted s.c. with MCF-7 cells (5 × 106 cells/mouse) at 6 weeks of age. Six weeks later, some of the mice were injected i.p. twice weekly with rIL-2 (1 × 104 U mouse–1 injection–1). Results clearly show that MCF-7 cells can grow progressively in SCID mice; 100% of the SCID mice implanted with MCF-7 cells developed palpable measurable tumors within 5–6 weeks after tumor cell inoculation. In addition, MCF-7 tumor growth was significantly (P <0.01) suppressed by rIL-2 treatment. rIL-2 treatment was non-toxic and no effect of treatment on body weight gains was observed. For non-tumor-bearing SCID mice, splenocytes treated in vitro with rIL-2 (lymphokine-activated killer, LAK, cells) or splenocytes derived from rIL-2-treated SCID mice (LAK cells) had significant (P <0.01) cytolytic activity toward MCF-7 carcinoma cells in vitro. In contrast, splenocytes (LAK cells) derived from tumor(MCF-7)-bearing rIL-2-treated SCID mice lacked cytolytic activities toward MCF-7 cells in vitro. No significant concentration of LAK cells in MCF-7 human breast carcinomas was observed nor did rIL-2 treatment significantly alter growth of MCF-7 cells in vitro. Thus, while rIL-2 treatment significantly suppressed growth of MCF-7 breast carcinomas in SCID mice, the mechanism of this growth suppression, albeit clearly not involving T and B lymphocytes, does not appear to be mediated via a direct cytolytic activity of LAK cells toward the carcinoma cells. However, rIL-2-activated SCID mouse splenocytes (LAK cells) do possess the capability of significant cytolytic activity toward MCF-7 human breast carcinoma cells. Thus, treatment of SCID mice with a potent lymphokine (rIL-2) induces a significant antitumor host response, a response that does not involve T and B lymphocytes and appears not to involve NK/LAK cells. This host response must be considered in future studies designed to investigate the interactions of reconstituted human immune systems and human cancers within this highly promising immuno deficient experimental animal model.  相似文献   

8.
Summary The biological properties of an immunotoxin composed of an anti-CD6 monoclonal antibody conjugated to whole ricin, which had been modified so that the galactose-binding sites of the B chain were blocked (blocked ricin), were examined. Treatment of peripheral blood lymphocytes with anti-CD6-blocked ricin for a 24-h period prevented T cell proliferation induced by phytohemagglutinin in a dose-dependent manner with concentrations causing 50% inhibition (IC50) ranging from 5 pM to 30 pM. In contrast, treatment with either blocked ricin alone or with a control immunotoxin prepared with a B-cell-lineage-restricted monoclonal antibody gave IC50 values of approximately 2 nM. Although shortening the duration of the anti-CD6-blocked ricin treatment to as little as 3 h had little significant effect on the observed inhibition, T cell viability experiments demonstrated that the magnitude of immunotoxin-induced killing after a given time period is significantly higher when the target cells become activated. Thus, from the initial concentration of cells treated with anti-CD6-blocked ricin placed in culture, 40%–45% viable cells remained after 2 days yet only 3%–9% remained if phorbol ester and Ca2+ ionophore were added; activation of T cells after mock treatment using blocked ricin plus nonconjugated anti-CD6 demonstrated that this effect was not the result of activation alone. The toxicity of anti-CD6-blocked ricin was also measured by inhibition of PHA-induced clonogenic growth of normal T cells. Continuous treatment of the cells using anti-CD6-blocked ricin at 0.1 nM resulted in a surviving fraction of about 3.5 × 10–3; when immunotoxin treatment was for 24 h or less, the surviving fraction was only about 10–1. As an indication of the unique specificity of anti-CD6-blocked ricin, immunotoxin pretreatment of potential responder cells prevented the generation of allogeneic cytolytic T lymphocytes in mixed lymphocyte cultures yet had little effect on the generation of interleukin-2-induced lymphokine-activated killer cell activity. We conclude that anti-CD6-blocked ricin demonstrates a cellular specificity and potency that make it a highly promising anti-T cell reagent.  相似文献   

9.
An immunotoxin (IT) constructed with RFB4, a murine anti-CD22 monoclonal antibody, and the “deglycosylated” A chain of ricin has shown activity at safe doses in patients with non-Hodgkin lymphoma and in children with acute lymphoblastic leukemia. The dose limiting toxicity is vascular leak syndrome (VLS), which appears to be due to a unique amino acid motif in the ricin toxin A (RTA) chain that damages vascular endothelial cells. We mutated recombinant (r) RTA to disable this site, but await testing of the IT prepared with this mutant RTA in humans. Another possible approach to reducing IT-induced VLS is to shorten the half-life of the IT in vivo. We previously constructed a mouse-human chimeric RFB4 by grafting the variable genes of RFB4 onto the human IgG1k constant regions. Here, we report the expansion of our panel of mutant chimeric RFB4s (mcRFB4s) that lack the ability to bind to the neonatal Fc receptor (FcRn). In comparison with cRFB4, which had a T1/2 of 263 h, the mcRFB4s had T1/2s ranging from 39–106 h. ITs were constructed with these mcRFB4s and rRTA. The mcRFB4-RTA ITs retained their cytotoxicity in vitro and had shorter half lives than the parental cRFB4-RTA IT. In addition, the mcRFB4 IT with the shortest T1/2 induced less pulmonary vascular leak in mice, which we have postulated is a surrogate marker for VLS in humans.Key words: chimeric, anti-CD22, monoclonal antibody, Fc mutations, ricin A chain, immunotoxins  相似文献   

10.
Background aimsGraft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation caused by donor T cells reacting against host tissues. Previous studies have suggested that mesenchymal stromal cells (MSCs) could exert potent immunosuppressive effects.MethodsThe ability of human bone marrow derived MSCs to prevent xenogeneic GVHD in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice and in NOD/SCID/interleukin-2Rγ(null) (NSG) mice transplanted with human peripheral blood mononuclear cells (PBMCs) was assessed.ResultsInjection of 200 × 106 human PBMCs intraperitoneally (IP) into sub-lethally (3.0 Gy) irradiated NOD/SCID mice also given anti-asialo GM1 antibodies IP 1 day prior and 8 days after transplantation induced lethal xenogeneic GVHD in all tested mice. Co-injection of 2 × 106 MSCs IP on day 0 did not prevent lethal xenogeneic GVHD induced by injection of human PBMCs. Similarly, injection of 30 × 106 human PBMCs IP into sub-lethally (2.5 Gy) irradiated NSG mice induced a lethal xenogeneic GVHD in all tested mice. Injection of 3 × 106 MSCs IP on days 0, 7, 14 and 21 did not prevent lethal xenogeneic GVHD induced by injection of human PBMCs.ConclusionsInjection of MSCs did not prevent xenogeneic GVHD in these two humanized mice models.  相似文献   

11.
M195 antibodies recognize CD33, an antigen present on acute myeloid leukemia blasts as well as some myeloid progenitor cells, but not on the ultimate hematopoietic progenitor stem cell. Immunotoxins (IT) reactive with human myeloid leukemias were constructed by conjugating gelonin, a single-chain ribosome-inactivating protein, to murine and genetically engineered, humanized M195 antibodies via anN-succinimidyl-3-(2-pyridyldithio)-propionate linkage. No losses of gelonin cytotoxic activity or M195 binding activity were observed after conjugation of up to two toxin molecules per antibody. Toxin conjugates displayed specific, potent toxicity for CD33+ cells. The murine and humanized IT were not toxic to CD33 cells and were 600 and 4500 times more potent, respectively, than free gelonin in inhibiting CD33+ HL60 cells. Treatment of HL60 cells with 1 g/ml HuM195-gelonin resulted in more than 1000 times lower colony formation; normal bone marrow mononuclear cell colonyforming units treated with HuM195-IT were reduced by a factor of 10. HL60 leukemia cells could be effectively purged from an excess of normal bone marrow cells. Exposure of target cells to IT for as little as 30 min was as effective as continuous exposure of IT for up to 6 days. However, measures of the efficacy of the immunotoxin were directly related to the length of time of observation after IT exposure and were inversely related to cell concentration. M195-gelonin immunoconjugates are potential candidates for therapeutic use in in vivo or ex vivo bone marrow purging of myeloid leukemias.These studies were supported in part by the Lucille P. Markey Charitable Trust, ACS Grant No. IM551, NIH PO1CA33049, NIH RO1CA55349. Research conducted, in part, by the Clayton Foundation for Research. David A Scheinberg is a Lucille P. Markey Scholar  相似文献   

12.
Acute T-cell lymphoblastic leukemia/lymphoma (T-ALL) is an aggressive hematopoietic malignancy affecting both children and adults. Previous studies of T-ALL mouse models induced by different genetic mutations have provided highly diverse results on the issues of T-cell leukemia/lymphoma-initiating cells (T-LICs) and potential mechanisms contributing to T-LIC transformation. Here, we show that oncogenic Kras (Kras G12D) expressed from its endogenous locus is a potent inducer of T-ALL even in a less sensitized BALB/c background. Notch1 mutations, including exon 34 mutations and recently characterized type 1 and 2 deletions, are detected in 100% of Kras G12D-induced T-ALL tumors. Although these mutations are not detected at the pre-leukemia stage, incremental up-regulation of NOTCH1 surface expression is observed at the pre-leukemia and leukemia stages. As secondary genetic hits in the Kras G12D model, Notch1 mutations target CD8+ T-cells but not hematopoietic stem cells to further promote T-ALL progression. Pre-leukemia T-cells without detectable Notch1 mutations do not induce T-ALL in secondary recipient mice compared with T-ALL tumor cells with Notch1 mutations. We found huge variations in T-LIC frequency and immunophenotypes of cells enriched for T-LICs. Unlike Pten deficiency-induced T-ALL, oncogenic Kras-initiated T-ALL is not associated with up-regulation of the Wnt/β-catenin pathway. Our results suggest that up-regulation of NOTCH1 signaling, through either overexpression of surface NOTCH1 or acquired gain-of-function mutations, is involved in both T-ALL initiation and progression. Notch1 mutations and Kras G12D contribute cooperatively to leukemogenic transformation of normal T-cells.  相似文献   

13.
Notch1 mutations are found in more than 50% of human T cell acute lymphoblastic leukemia (T-ALL) cells. However, the functions of Notch1 for human T cell development and leukemogenesis are not well understood. To examine the role of Notch1, human hematopoietic stem cells (HSCs), which had been transduced with a constitutively active form of Notch1 (ICN1), were transplanted into severely immunodeficient NOD/Shi-scid-IL2rγnull (NOG) mice. We found that the great majority of the ICN1-expressing hematopoietic cells in the bone marrow expressed surface markers for T cells, such as CD3, CD4, and CD8, and that this T cell development was independent of the thymus. Accordingly, phenotypically mature CD8+ single positive (SP) T cells were observed in the spleen. Furthermore, T-ALL developed in one NOG recipient mouse out of 26 that had been secondary transferred with the T cells developed in the first NOG mice. These results indicate that Notch1 signaling in HSCs promotes CD8+ SP T cell development, and that T cell leukemogenesis may require additional oncogenic factors other than Notch1 activation.  相似文献   

14.
Background aimsTumor antigen-specific cytotoxic T lymphocytes (CTL) have been used in the treatment of human cancer, including leukemia. Several studies have established PR1 peptide, an HLA-A2.1-restricted peptide derived from proteinase 3 (P3), as a human leukemia-associated antigen. PR1-specific CTL elicited in vitro from healthy donors have been shown to lyse P3-expressing AML cells from patients. We investigated whether PR1-CTL can be adoptively transferred into NOD/SCID mice to eliminate human leukemia cells.MethodsPR1-CTL were generated in bulk culture from peripheral blood mononuclear cells (PBMC) stimulated with autologous dendritic cells. Human acute myeloid leukemia (AML) patient samples were injected and engrafted in murine bone marrow at 2 weeks post-transfer.ResultsFollowing adoptive transfer, bone marrow aspirate from mice that received AML alone had 72–88% blasts in a hypercellular marrow, whereas mice that received AML plus PR1-CTL co-infusion had normal hematopoietic elements and only 3–18% blasts in a hypocellular marrow. The PR1-CTL persisted in the bone marrow and liver and maintained a CD45RA? CD28+ effector phenotype.ConclusionsWe found that adoptive transfer of PR1-CTL generated in vitro is associated with reduced AML cells in NOD/SCID mice. PR1-CTL can migrate to the sites of disease and maintain their capacity to kill the AML cells. The surface phenotype of PR1-CTL was consistent with their trafficking pattern in both vascular and end-organ tissues.  相似文献   

15.
《MABS-AUSTIN》2013,5(1):57-68
An immunotoxin (IT) constructed with RFB4, a murine anti-CD22 monoclonal antibody, and the “deglycosylated” A chain of ricin has shown activity at safe doses in patients with non-Hodgkin lymphoma and in children with acute lymphoblastic leukemia. The dose limiting toxicity is vascular leak syndrome (VLS), which appears to be due to a unique amino acid motif in the ricin toxin A (RTA) chain that damages vascular endothelial cells. We mutated recombinant (r) RTA to disable this site, but await testing of the IT prepared with this mutant RTA in humans. Another possible approach to reducing IT-induced VLS is to shorten the half-life of the IT in vivo. We previously constructed a mouse-human chimeric RFB4 by grafting the variable genes of RFB4 onto the human IgG1k constant regions. Here, we report the expansion of our panel of mutant chimeric RFB4s (mcRFB4s) that lack the ability to bind to the neonatal Fc receptor (FcRn). In comparison with cRFB4, which had a T1/2 of 263 h, the mcRFB4s had T1/2s ranging from 39 to 106 h. ITs were constructed with these mcRFB4s and rRTA. The mcRFB4-RTA ITs retained their cytotoxicity in vitro and had shorter half lives than the parental cRFB4-RTA IT. In addition, the mcRFB4 IT with the shortest T1/2 induced less pulmonary vascular leak in mice, which we have postulated is a surrogate marker for VLS in humans.  相似文献   

16.
CD22 is a cell-surface adhesion molecule on most B-cell NHL, so it is a promising target for immunotherapy. HB22.7 is an anti-CD22 mAb that binds the two NH2-terminal immunoglobulin domains and specifically blocks the interaction of CD22 with its ligand. CD22-blocking mAbs induce apoptosis in neoplastic B-cells and are functionally distinguishable from other anti-CD22 mAbs. This study assessed the optimal dose, route, schedule, and the targeted CD22 epitope. Raji NHL-bearing nude mice were studied. A non-blocking anti-CD22 mAb (HB22.27) was used as a control. HB22.27 had minimal effect, whereas HB22.7 improved survival and shrank tumors substantially. HB22.7 doses greater than 1.4 mg/week did not further increase efficacy (or toxicity). Tumors less than 200 mm3 had a higher response rate than did larger tumors. Various schedules of HB22.7 administration were tested; one dose every other week was more effective than more or less frequent dosing. Pharmacokinetic studies revealed that the half-life of HB22.7 was 28 days; this correlated with the time needed to re-populate cell-surface CD22 after treatment with HB22.7. Immuno-PET showed that NHL was rapidly and specifically targeted by copper-64-labeled-HB22.7. This study provided data as to an optimal dose, route, schedule and interval between doses of HB22.7.  相似文献   

17.
Lacto-N-fucopentaose III (LNFPIII) is found in human milk and on the Th2 driving helminth parasite Schistosoma mansoni. This pentasaccharide drives Th2-type responses in vivo and in vitro when conjugated to a carrier. In an attempt to further understand early events in Th1 to Th2 switching, we examined phenotypic and functional changes in peritoneal cell populations in BALB/c and SCID mice following LNFPIII-dextran injection. We found that i.p. injection with LNFPIII-dextran resulted in rapid (<20 h) expansion of the Gr1(+) subpopulation of F4/80(+)/CD11b(+) peritoneal cells, comprising up to 75% of F4/80(+)/CD11b(+) peritoneal cells compared with 18% in uninjected or dextran-injected mice. Functionally, these cells suppressed anti-CD3- and anti-CD28-induced proliferation of naive CD4(+) T cells. LNFPIII-dextran also expanded functional Gr1(+) suppressor macrophages in SCID mice, demonstrating that expansion and function of suppressor cells did not require T cells. Suppression in both BALB/c and SCID mice was NO and IFN-gamma dependent, as addition of inhibitors of inducible NO synthase (N(G)-monomethyl-L-arginine), as well as anti-IFN-gamma Abs, restored the ability of CD4(+) T cells to proliferate in vitro. Depletion of the F4/80(+) subset of Gr1(+) cells eliminated the suppressive activity of peritoneal exudate cells showing that these cells were macrophages. Thus, LNFPIII-dextran rapidly expands the Gr1(+) suppressor macrophage population in the peritoneal cavities of otherwise naive mice. These Gr1(+) cells suppress proliferation of naive CD4(+) T cells in an NO-dependent mechanism, and may play a regulatory role in the switching of Th1- to Th2-type responses.  相似文献   

18.
19.
Treatment of normal mice with a mAb to CD4 (GK1.5) was explored as a means of inhibiting the antibody response to an immunotoxin. Three days of pretreatment with 200 micrograms of GK1.5 completely abrogated the primary antibody response to a 3-micrograms dose of a mutant diphtheria toxin conjugated to an anti-transferrin receptor antibody. The same dose and schedule of anti-CD4 antibody significantly reduced and delayed, but did not prevent, the anamnestic antitoxin response in animals that had been previously primed to the immunotoxin. Three daily injections of anti-CD4 antibodies followed by weekly doses of immunotoxin resulted in a 3-wk delay in the development of antitoxin antibodies, and the kinetics of the antitoxin response correlated with the kinetics of recovery of CD4+ T cells in the spleen and lymph nodes. The antitoxin response to repeated doses of immunotoxin was completely abrogated when anti-CD4 antibodies were given every 2 wk throughout the course of immunotoxin treatment. Thus, transient depletion of Th cells during treatment can block the immune response to an immunotoxin. There was no evidence of tolerance induction with this regimen.  相似文献   

20.
Recent studies have demonstrated the importance of CD40/CD154 (CD40L) interactions for the generation of cell-mediated antitumor immune responses. Here we show that signaling via CD40 (through the use of the activating anti-CD40 mAb, 1C10) can actually promote the in vitro generation of CTL activity by CD8+ splenic T cells from mice bearing a large MOPC-315 tumor. Anti-CD40 mAb had to be added at the initiation of the stimulation cultures of tumor-bearing splenic cells in order to realize fully its potentiating activity for cytotoxic T lymphocyte (CTL) generation, suggesting that signaling through CD40 is important at the inductive stage of antitumor cytotoxicity. Moreover, anti-CD40 mAb was found to enhance the expression of the B7-2 (CD86) and, to a lesser extent, the B7-1 (CD80) costimulatory molecules on B220+ cells (i.e., B cells), and B7-2 and, to a lesser extent, B7-1 molecules played an important role in the potentiating effect of anti-CD40 mAb for CTL generation by tumor-bearer splenic cells. Furthermore, B220+ cells were found to be essential for the potentiating effect of anti-CD40 mAb, as depletion of B220+ cells at the inductive stage completely abrogated the ability of anti-CD40 mAb to enhance CTL generation. Thus, signaling through CD40 enhances CTL generation by CD8+ T cells from tumor-bearing mice by a mechanism that involves the up-regulation of B7-2 and, to a lesser extent, B7-1 expression on B220+ cells. Received: 23 December 1998 / Accepted: 22 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号