首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The drumfilter effluent from a recirculation aquaculture system (RAS) can be used as substrate for heterotrophic bacteria production. This biomass can be re-used as aquatic feed. RAS effluents are rich in nitrate and low in total ammonia nitrogen (TAN). This might result in 20% lower bacteria yields, because nitrate conversion into bacteria is less energy efficient than TAN conversion. In this study the influence of TAN concentrations (1, 12, 98, 193, 257mgTAN/l) and stable nitrate-N concentrations (174+/-29mg/l) on bacteria yields and nitrogen conversions was investigated in a RAS under practical conditions. The effluent slurry was supplemented with 1.7gC/l sodium acetate, due to carbon deficiency, and was converted continuously in a suspended bacteria growth reactor (hydraulic retention time 6h). TAN utilization did not result in significantly different observed yields than nitrate (0.24-0.32gVSS/gC, p=0.763). However, TAN was preferred compared to nitrate and was converted to nearly 100%, independently of TAN concentrations. TAN and nitrate conversions rates were differing significantly for increasing TAN levels (p<0.000 and p=0.012), and were negatively correlated. It seems, therefore, equally possible to supply the nitrogenous substrate for bacteria conversion as nitrate and not as TAN. The bacteria reactor can, as a result, be integrated into an existing RAS as end of pipe treatment.  相似文献   

2.
The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of the reactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity.  相似文献   

3.
Hydrogenotrophic denitrification was demonstrated using hydrogen generated from anoxic corrosion of metallic iron. For this purpose, a mixture of hydrogenated water and nitrate solution was used as reactor feed. A semi-batch reactor with nitrate loading of 2000 mg m−3 d−1 and hydraulic retention time (HRT) of 50 days produced effluent with nitrate concentration of 0.27 mg N L−1 (99% nitrate removal). A continuous flow reactor with nitrate loading of 28.9 mg m−3 d−1 and HRT of 15.6 days produced effluent with nitrate concentration of ∼0.025 mg N L−1 (95% nitrate removal). In both cases, the concentration of nitrate degradation by-products, viz., ammonia and nitrite, were below detection limits. The rate of denitrification in the reactors was controlled by hydrogen availability, and hence to operate such reactors at higher nitrate loading rates and/or lower HRT than reported in the present study, hydrogen concentration in the hydrogenated water must be significantly increased.  相似文献   

4.

Aim

To provide deeper insights into nitrification process within aerobic bioreactors containing supplemental physical support media (hybrid bioreactors).

Methods and Results

Three bench‐scale hybrid bioreactors with different media size and one control bioreactor were operated to assess how biofilm integrity influences microbial community conditions and bioreactor performance. The systems were operated initially at a 5‐day hydraulic retention time (HRT), and all reactors displayed efficient nitrification and chemical oxygen demand (COD) removal (>95%). However, when HRT was reduced to 2·5 days, COD removal rates remained high, but nitrification efficiencies declined in all reactors after 19 days. To explain reduced performance, nitrifying bacterial communities (ammonia‐oxidizing bacteria, AOB; nitrite‐oxidizing bacteria, NOB) were examined in the liquid phase and also on the beads using qPCR, FISH and DGGE. Overall, the presence of the beads in a reactor promoted bacterial abundances and diversity, but as bead size was increased, biofilms with active coupled AOB–NOB activity were less apparent, resulting in incomplete nitrification.

Conclusions

Hybrid bioreactors have potential to sustain effective nitrification at low HRTs, but support media size and configuration type must be optimized to ensure coupled AOB and NOB activity in nitrification.

Significance and Impact of the Study

This study shows that AOB and NOB coupling must be accomplished to minimize nitrification failure.  相似文献   

5.
Cometabolism of trichloroethylene (TCE) by phenol-fed enrichments was evaluated in four reactors with distinct phenol feeding patterns. The reactors were inoculated from the same source, operated at the same average dilution rate, and received the same mass of phenol over time. Only the timing of phenol addition differed. Reactor C received phenol continuously; reactor SC5 received phenol semicontinuously--alternating between 5 h of feed and 3 h without feed; reactor SC2 alternated between 2 h of feed and 6 h without feed; and reactor P received a single pulse every 24 h. The structure of the enrichments and their capacity for TCE transformation were analyzed. In long-term operation, reactors C and SC5 were dominated by fungi, had higher levels of predators, were more susceptible to biomass fluctuations, and exhibited reduced capacity for TCE transformation. Reactors P and SC2 were characterized by lower levels of fungi, higher bacterial biomass, higher concentrations of TCE-degrading organisms, and higher rates of TCE transformation. After 200 days of operation, rates of TCE transformation increased 10-fold in reactor P, resulting in TCE transformation rates that were 20 to 100 times higher than the rates of the other reactor communities. The cause of this shift is unknown. Isolates capable of the highest rates of TCE transformation were obtained from reactor P. We conclude that cometabolic activity depends upon microbial community structure and that the community structure can be manipulated by altering the growth substrate feeding pattern.  相似文献   

6.
The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of thereactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity.  相似文献   

7.
The gastrointestinal tract is a dynamic ecosystem containing a complex microbial community. In this paper, the indigenous intestinal bacteria and the microbial fermentation profile particularly short chain fatty acids (SCFA), lactate, and ammonia concentrations are reviewed. The intestinal bacterial composition changes with age. The bacterial density of the small intestine increases with age and comprises of lactobacilli, streptococci, enterobacteria, fusobacteria and eubacteria. Strict anaerobes (anaerobic gram-positive cocci, Eubacterium spp., Clostridium spp., Lactobacillus spp., Fusobacterium spp. and Bacteroides) are predominating caecal bacteria in young broilers. Data from culture-based studies showed that bifidobacteria could not be isolated from young birds, but were recovered from four-week-old broilers. Caecal lactobacilli accounted for 1.5-24% of the caecal bacteria. Gene sequencing of caecal DNA extracts showed that the majority of bacteria belonged to Clostridiaceae. Intestinal bacterial community is influenced by the dietary ingredients, nutrient levels and physical structure of feed. SCFA and other metabolic products are affected by diet formulation and age. Additional studies are required to know the bacterial metabolic activities together with the community analysis of the intestinal bacteria. Feed composition and processing have great potential to influence the activities of intestinal bacteria towards a desired direction in order to support animal health, well-being and microbial safety of broiler meat.  相似文献   

8.
Degradation of 4-chloroaniline in the presence of aniline by a microbial community in a laboratory-scale biofilm reactor was evaluated. The starter inoculum was isolated and reconstructed from a percolating column enrichment of Indonesian agricultural soil. The capacity to mineralise and detoxify 4-chloroaniline in the presence of aniline was demonstrated by the biofilm reactor when operated at high hydraulic retention time (HRT; 0.87 h). At low HRT (0.23 h and 0.39 h) 4-chlorocatechol accumulated in the effluent, accompanied by a decrease in dechlorination and detoxification. When returned to high HRT (2.14 h), the accumulation of 4-chlorocatechol stopped and the extent of dechlorination and detoxification increased. Bacteria other than the original inoculum appeared in the reactor when the operating mode was switched from closed cycle to open cycle. One of these bacteria, identified as Pseudomonas putida R1 by partial 16S rDNA sequencing, subsequently dominated the reactor at every HRT imposed. PCR-based single-strand conformational polymorphism of 16 s rDNA and traditional cultivation procedures indicated that the bacterial composition in the reactor shifted in response to applied HRT. The relationship between the bacterial abundance and the degradation capacity of the reactor is discussed.  相似文献   

9.
Molecular approaches have revealed considerable diversity and uncultured novelty in natural prokaryotic populations, but not direct links between the new genotypes detected and ecosystem processes. Here we describe the influence of the structure of communities of ammonia-oxidizing bacteria on nitrogen cycling in microcosms containing natural and managed grasslands and amended with artificial sheep urine, a major factor determining local ammonia concentrations in these environments. Nitrification kinetics were assessed by analysis of changes in urea, ammonia, nitrite and nitrate concentrations and ammonia oxidizer communities were characterized by analysis of 16S rRNA genes amplified from extracted DNA using ammonia oxidizer-specific primers. In natural soils, ammonia oxidizer community structure determined the delay preceding nitrification, which depended on the relative abundance of two Nitrosospira clusters, termed 3a and 3b. In batch cultures, pure culture and enrichment culture representatives of Nitrosospira 3a were sensitive to high ammonia concentration, while Nitrosospira cluster 3b representatives and Nitrosomonas europaea were tolerant. Delays in nitrification occurred in natural soils dominated by Nitrosospira cluster 3a and resulted from the time required for growth of low concentrations of Nitrosospira cluster 3b. In microcosms dominated by Nitrosospira cluster 3b and Nitrosomonas, no substantial delays were observed. In managed soils, no delays in nitrification were detected, regardless of initial ammonia oxidizer community structure, most probably resulting from higher ammonia oxidizer cell concentrations. The data therefore demonstrate a direct link between bacterial community structure, physiological diversity and ecosystem function.  相似文献   

10.
In activated sludge, protozoa feed on free-swimming bacteria and suspended particles, inducing flocculation and increasing the turnover rate of nutrients. In this study, the effect of protozoan grazing on nitrification rates under various conditions in municipal activated sludge batch reactors was examined, as was the spatial distribution of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) within the activated sludge. The reactors were monitored for ammonia, nitrite, nitrate, and total nitrogen concentrations, and bacterial numbers in the presence and absence of cycloheximide (a protozoan inhibitor), allylthiourea (an inhibitor of ammonia oxidation), and EDTA (a deflocculating agent). The accumulations of nitrate, nitrite, and ammonia were lower in batches without than with protozoa grazing. Inhibition of ammonia oxidation also decreased the amount of nitrite and nitrate accumulation. Inhibiting protozoan grazing along with ammonia oxidation further decreased the amounts of nitrite and nitrate accumulated. Induction of deflocculation led to high nitrate accumulation, indicating high levels of nitrification; this effect was lessened in the absence of protozoan grazing. Using fluorescent in situ hybridization and confocal laser scanning microscopy, AOB and NOB were found clustered within the floc, and inhibiting the protozoa, inhibiting ammonia oxidation, or inducing flocculation did not appear to lower the number of AOB and NOB present or affect their position within the floc. These results suggest that the AOB and NOB are present but less active in the absence of protozoa.  相似文献   

11.
Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.  相似文献   

12.
The influence of the feedstock type on the microbial communities involved in anaerobic digestion was investigated in laboratory-scale biogas reactors fed with different agricultural waste materials. Community composition and dynamics over 2 months of reactors’ operation were investigated by amplicon sequencing and profiling terminal restriction fragment length polymorphisms of 16S rRNA genes. Major bacterial taxa belonged to the Clostridia and Bacteroidetes, whereas the archaeal community was dominated by methanogenic archaea of the orders Methanomicrobiales and Methanosarcinales. Correlation analysis revealed that the community composition was mainly influenced by the feedstock type with the exception of a temperature shift from 38 to 55 °C which caused the most pronounced community shifts. Bacterial communities involved in the anaerobic digestion of conventional substrates such as maize silage combined with cattle manure were relatively stable and similar to each other. In contrast, special waste materials such as chicken manure or Jatropha press cake were digested by very distinct and less diverse communities, indicating partial ammonia inhibition or the influence of other inhibiting factors. Anaerobic digestion of chicken manure relied on syntrophic acetate oxidation as the dominant acetate-consuming process due to the inhibition of aceticlastic methanogenesis. Jatropha as substrate led to the enrichment of fiber-degrading specialists belonging to the genera Actinomyces and Fibrobacter.  相似文献   

13.
Microbial communities transform nitrogen (N) compounds, thereby regulating the availability of N in soil. The N cycle is defined by interacting microbial functional groups, as inorganic N‐products formed in one process are the substrate in one or several other processes. The nitrification pathway is often a two‐step process in which bacterial or archaeal communities oxidize ammonia to nitrite, and bacterial communities further oxidize nitrite to nitrate. Little is known about the significance of interactions between ammonia‐oxidizing bacteria (AOB) and archaea (AOA) and nitrite‐oxidizing bacterial communities (NOB) in determining the spatial variation of overall nitrifier community structure. We hypothesize that nonrandom associations exist between different AO and NOB lineages that, along with edaphic factors, shape field‐scale spatial patterns of nitrifying communities. To address this, we sequenced and quantified the abundance of AOA, AOB, and Nitrospira and Nitrobacter NOB communities across a 44‐hectare site with agricultural fields. The abundance of Nitrobacter communities was significantly associated only with AOB abundance, while that of Nitrospira was correlated to AOA. Network analysis and geostatistical modelling revealed distinct modules of co‐occurring AO and NOB groups occupying disparate areas, with each module dominated by different lineages and associated with different edaphic factors. Local communities were characterized by a high proportion of module‐connecting versus module‐hub nodes, indicating that nitrifier assemblages in these soils are shaped by fluctuating conditions. Overall, our results demonstrate the utility of network analysis in accounting for potential biotic interactions that define the niche space of nitrifying communities at scales compatible to soil management.  相似文献   

14.
【背景】来自浮霉菌门(Planctomycetes)的厌氧氨氧化菌是高氨污染系统安全脱氮的生态友好型微生物,但关于特定生态梯度下Planctomycetes群落结构功能的空间分化以及驱动分化的主要环境因子等问题尚未引起关注。【目的】阐明Planctomycetes群落结构空间分化及影响其分化的主要环境因子。【方法】运用16S rRNA基因高通量测序手段检测温带半干旱区河流系统砂质及粉质沉积物、粉砂质及粉质土壤Planctomycetes群落结构的空间分布变化,统计学方法分析粉粒等理化因子对Planctomycetes群落结构功能分化的影响。【结果】OM190uboo. o1种群主要分布在寡营养的砂质沉积物中,仅由砂粒正向驱动;OM190ooo. o2和SM1A02. ub5种群主要分布在中营养的粉砂质土壤中,由水分和pH等正向驱动;AKYG587.ub3、Pla4lineageoo...  相似文献   

15.
To enrich syntrophic acetate‐oxidizing bacteria (SAOB), duplicate chemostats were inoculated with sludge from syntrophic acetate oxidation (SAO)‐dominated systems and continuously supplied with acetate (0.4 or 7.5 g l?1) at high‐ammonia levels. The chemostats were operated under mesophilic (37°C) or thermophilic (52°C) temperature for about six hydraulic retention times (HRT 28 days) and were sampled over time. Irrespective of temperature, a methane content of 64–69% and effluent acetate level of 0.4–1.0 g l?1 were recorded in chemostats fed high acetate. Low methane production in the low‐acetate chemostats indicated that the substrate supply was below the threshold for methanization of acetate via SAO. Novel representatives within the family Clostridiales and genus Syntrophaceticus (class Clostridia) were identified to represent putative SAOB candidates in mesophilic and thermophilic conditions respectively. Known SAOB persisted at low relative abundance in all chemostats. The hydrogenotrophic methanogens Methanoculleus bourgensis (mesophilic) and Methanothermobacter thermautotrophicus (thermophilic) dominated archaeal communities in the high‐acetate chemostats. In line with the restricted methane production in the low‐acetate chemostats, methanogens persisted at considerably lower abundance in these chemostats. These findings strongly indicate involvement in SAO and tolerance to high ammonia levels of the species identified here, and have implications for understanding community function in stressed anaerobic processes.  相似文献   

16.
The effects of long-term fertilization with sewage sludge on the aerobic, chemoheterotrophic portion of a salt marsh bacterial community were examined. The study site in the Great Sippewissett Marsh, Cape Cod, Mass., consisted of experimental plots that were treated with different amounts of commercial sewage sludge fertilizer or with urea and phosphate. The number of CFUs, percentage of mercury- and cadmium-resistant bacteria, and percentage of antibiotic-resistant bacteria were all increased in the sludge-fertilized plots. Preliminary taxonomic characterization showed that sludge fertilization markedly altered the taxonomic distribution and reduced diversity within both the total heterotrophic and the mercury-resistant communities. In control plots, the total heterotrophic community was fairly evenly distributed among taxa and the mercury-resistant community was dominated by Pseudomonas spp. In sludge-fertilized plots, both the total and mercury-resistant communities were dominated by a single Cytophaga sp.  相似文献   

17.
吴佩  高科技  刘涛  王亚芬 《水生生物学报》2022,46(10):1447-1455
研究以四溴联苯醚(BDE-47)为目标污染物,构建了两套深型复合垂直流人工湿地小试系统(IVCW,总基质层高=180 cm)。在固定水力停留时间(HRT=3d)和水力负荷(0.3 m/d)条件下,分析测定其对BDE-47(进水浓度=25μg/L)的分段去除率,并探讨PBDEs加入对IVCW系统常规净化效果与基质微生物的影响。批实验结果表明,运行3个月后, IVCW对模拟污水中BDE-47去除率达到99.9%。与对照组相比, BDE-47处理组对氨氮的去除率由72.3%提高至82.9%,但对硝态氮的去除率显著下降,由53.0%降至28.1%,化学需氧量(COD)去除率由88.1%降至82.3%。IVCW各单元基质中BDE-47的残留量沿水流方向逐渐递减,在距离入流最近的下行流上层单元中BDE-47含量最高(约0.01μg/g);但BDE-47的加入导致基质微生物脱氢酶活性明显降低。微生物特征脂肪酸分析结果表明,实验组与对照组下行流单元微生物群落组成差异明显,分别以具有耐受型较强的微生物如革兰氏阳性厌氧菌和快速生长的好氧型革兰氏阴性菌为主。探究IVCW对BDE-47的去除潜力及迁移转化规律...  相似文献   

18.
《Process Biochemistry》2004,39(10):1257-1267
A comparative study of a fermentation process for total volatile fatty acids (TVFA) production using pilot-scale fixed-bed (FAS) and suspended biomass (FER) reactors in which similar operational conditions was carried out. The influence of the changes of ambient temperatures at fixed operational conditions was also studied. Oxidation–reduction potential (ORP) increased and effluent pH decreased as the hydraulic retention time (HRT) decreased, which was favourable for TVFA production. Equations describing the ORP and pH variations with the HRT were obtained. ORP variation with HRT for FAS and FER reactors followed a logarithmic function with a regression coefficient, R2, equal to 0.98. The variations of pH with HRT followed polynomial functions with regression coefficients of 0.96 and 0.98 for FAS and FER reactors, respectively. Hydrolysis process increased with the experiment duration. At the beginning of the experiment, effluent soluble COD (SCOD) decreased with respect to the influent but further effluent SCOD increased showing higher values compared to the influent. Cold temperatures were more favourable than summer temperatures for the accumulation of TVFA at the liquid effluent. The FAS reactor was more effective in the production of TVFA than the FER reactor. The maximum yields of TVFA were obtained at an organic volumetric loading rate (BV) of 1.9 g COD/l per day, corresponding to an HRT of 3.4 h, for both reactors. A maximum increase of ammonia and phosphorus was observed at the maximum value of HRT coinciding with an increase of pH and a decrease of ORP, as could be previously observed. The average P/SCOD ratio for the influent and effluent were 0.06 and 0.05, respectively, for FAS and FER reactors. The average Ammonia/SCOD ratio for the influent and effluent were 0.15 and 0.14, respectively. These results demonstrate that effluent quality was improved by the treatment employed in case a further process of nutrient removal is carried out.  相似文献   

19.
Thermophilic dry anaerobic digestion of sludge for cellulose methanization was acclimated at 53 °C for nearly 5 years using a waste paper-based medium. The stability of the microbial community structure and the microbial community responsible for the cellulose methanization were studied by 16S rRNA gene-based clone library analysis. The microbial community structure remained stable during the long-term acclimation period. Hydrogenotrophic methanogens dominated in methanogens and Methanothermobacter, Methanobacterium, Methanoculleus, and Methanosarcina were responsible for the methane production. Bacteria showed relatively high diversity and distributed mainly in the phyla Firmicutes, Bacteroidetes, and Synergistetes. Ninety percent of operational taxonomic units (OTUs) were affiliated with the phylum Firmicutes, indicating the crucial roles of this phylum in the digestion. Relatives of Clostridium stercorarium, Clostridium thermocellum, and Halocella cellulosilytica were dominant cellulose degraders. The acclimated stable sludge was used to treat garbage stillage discharged from a fuel ethanol production process, and the shift of microbial communities with the change of feed was analyzed. Both archaeal and bacterial communities had obviously changed: Methanoculleus spp. and Methanothermobacter spp. and the protein- and fatty acid-degrading bacteria became dominant. Accumulation of ammonia as well as volatile fatty acids led to the inhibition of microbial activity and finally resulted in the deterioration of methane fermentation of the garbage stillage.  相似文献   

20.

Background

Food waste is a large bio-resource that may be converted to biogas that can be used for heat and power production, or as transport fuel. We studied the anaerobic digestion of food waste in a staged digestion system consisting of separate acidogenic and methanogenic reactor vessels. Two anaerobic digestion parameters were investigated. First, we tested the effect of 55 vs. 65 °C acidogenic reactor temperature, and second, we examined the effect of reducing the hydraulic retention time (HRT) from 17 to 10 days in the methanogenic reactor. Process parameters including biogas production were monitored, and the microbial community composition was characterized by 16S amplicon sequencing.

Results

Neither organic matter removal nor methane production were significantly different for the 55 and 65 °C systems, despite the higher acetate and butyrate concentrations observed in the 65 °C acidogenic reactor. Ammonium levels in the methanogenic reactors were about 950 mg/L NH4 + when HRT was 17 days but were reduced to 550 mg/L NH4 + at 10 days HRT. Methane production increased from ~ 3600 mL/day to ~ 7800 when the HRT was decreased. Each reactor had unique environmental parameters and a correspondingly unique microbial community. In fact, the distinct values in each reactor for just two parameters, pH and ammonium concentration, recapitulate the separation seen in microbial community composition. The thermophilic and mesophilic digesters were particularly distinct from one another. The 55 °C acidogenic reactor was mainly dominated by Thermoanaerobacterium and Ruminococcus, whereas the 65 °C acidogenic reactor was initially dominated by Thermoanaerobacterium but later was overtaken by Coprothermobacter. The acidogenic reactors were lower in diversity (34–101 observed OTU0.97, 1.3–2.5 Shannon) compared to the methanogenic reactors (472–513 observed OTU0.97, 5.1–5.6 Shannon). The microbial communities in the acidogenic reactors were > 90% Firmicutes, and the Euryarchaeota were higher in relative abundance in the methanogenic reactors.

Conclusions

The digestion systems had similar biogas production and COD removal rates, and hence differences in temperature, NH4 + concentration, and pH in the reactors resulted in distinct but similarly functioning microbial communities over this range of operating parameters. Consequently, one could reduce operational costs by lowering both the hydrolysis temperature from 65 to 55 °C and the HRT from 17 to 10 days.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号