首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inducing times for spinal cord and deuterencephalon in Cynops gastrula were determined by the sandwich method. The extreme posterior of the archenteron roof at the slit-blastopore stage (tail organizer) was used as an inducer. First, the presumptive ectoderm of the earliest gastrula (0-hr stage) was put in contact with the organizer for 6 to 24 hr. Spinal cord and deuterencephalon were induced in almost all explants after 24 and 21 hr of contact, respectively, indicating that 24 hr is enough time for differentiations of both spinal cord and deuterencephalon. Next, presumptive ectoderm of 6- to 21-hr exogastrulae was put in contact with the organizer until the 24-hr stage. Results showed that the net inducing times for spinal cord and deuterencephalon were 18 and 15 hr, respectively, and that neural competence appeared in the presumptive ectoderm at the 6-hr stage (straight-blastopore stage).  相似文献   

2.
Summary The effect of aging on the neural competence of the presumptive ectoderm of the early gastrula, and the effect of aged ectoderm on the differentiation of the still uninvaginated dorsal blastoporal lip at the small yolk-plug stage — representing the trunk organizer — were examined by the sandwich method inCynops pyrrhogaster.The presumptive ectoderm to be used as reaction system was taken from 0 to 36 h exogastrulae obtained by operation at the early gastrula stage and combined with trunk organizer. In the 0 to 12 h explants typical trunktail structures were formed. With further aging of the presumptive ectoderm a decrease in frequency of spinal cord, notochord, and muscle and a simultaneous increase in frequency of mesenchyme and mesothelium were observed. In the 30 and 36 h explants neural competence had largely disappeared, the frequency of notochord and muscle become very low and their differentiation very poor, whereas the frequency of mesenchyme and mesothelium reached very high levels.We infer a reciprocal relationship between the induced spinal cord and the differentiation of notochord and muscle, as well as a transformation of notochordal material into mesenchyme and mesothelium under the influence of the aged ectoderm. The mode of action of the trunk organizer in normal development is discussed.  相似文献   

3.
Brain formation in variously aged presumptive ectoderms of Cynops pyrrhogaster under the influence of the head organizer was examined by the sandwich method. The head organizer was obtained from the middle portion of the archenteron roof at the slit-blastopore stage. The presumptive ectoderm was taken from 0- to 36-hr exogastrulae. Exogastrulae were prepared from the earliest gastrulae just before invagination (0-hr embryos). The presumptive neural plate overlying the archenteron roof used as organizer was cultivated in an envelope of belly ectoderm from an early neurula.
The following results were obtained: 1) Brain induction was almost entirely restricted to explants covered with 6-hr ectoderm and its frequency was low. 2) The presumptive neural plate above the head organizer was almost completely determined as neural tissues. 3) The head organizer showed a tendency to differentiate into more endodermal and less mesodermal tissues than those expected from its prospective fate.
Brain induction in normal development and the relationship between neural tissue formation in variously aged presumptive ectoderms and the time necessary for neural induction are discussed.  相似文献   

4.
NEURAL COMPETENCE AND CELL LINEAGE OF GASTRULA ECTODERM OF NEWT EMBRYO   总被引:1,自引:1,他引:0  
The change in the capacity to form neural structures was quantitatively analyzed in both intact and isolated ectoderms of Cynops pyrrhogaster gastrula. The frequency of explants with induced neural structures abruptly decreases between stage 12c and stage 13b in intact ectoderm, and between 12 hr and 18 hr preculture in isolated ectoderm. The quantitative analysis also made clear that the size of the cell population of induced neural structures was gradually reduced with the aging of the ectoderm. The authors simultaneously examined the cell proliferation of early gastrula ectoderm and confirmed that all ectodermal cells divided at least once within 18 hr at 23°C, after which the neural competence of the ectoderm completely disappeared.
The relationships between neural competence and cell lineage (cell generation) of the ectoderm are discussed in the light of these findings.  相似文献   

5.
The inducing properties of activin-treated ectoderm of Xenopus laevis were examined by the preculture and sandwich culture methods. Presumptive ectodermal sheets of the late blastula were treated with 10–100 ng/ml of activin A and precultured for 0–7 hr in Steinberg's solution. They were then sandwiched between two sheets of ectoderm from other late blastulae. Ectoderm precultured for a short term induced trunk-tail structures, whereas that precultured for a long term induced head structures in addition to trunk-tail structures. These time-dependent changes in inducing properties occurred more rapidly when the concentration of activin A was higher. These results suggest that the activin-treated ectoderm functioned as a "head organizer" or "trunk-tail organizer" depending upon the concentration of activin A and the duration of preculture.
To trace the cell lineage of the sandwich explants, activin-treated ectoderm labeled with fluorescein-dextran-amine (FDA) was used in this study. The explants sandwiching the long term-precultured ectoderm formed head structures equipped with non-labeled neural tissues (brain and eye) as well as FDA-labeled mesodermal tissues. These results suggest that the activin-treated ectoderm mainly differentiates into mesodermal tissues and induces neural tissues as the organizer does in normal development.  相似文献   

6.
Using embryos of the Japanese newt, Cynops pyrrhogaster , homoiogenetic and heterogenetic induction were investigated in the partially mesodermaelzed presumptive ectoderm. Half of the isolated presumptive ectoderm was placed in contact with the swimbladder of the crucian carp, Carasius auratus , for 15 or 60 min, while the other half was stained with Nile blue sulfate at the same time. The distribution of the stained cells in the tissues evoked in the explants was examined after cultivation for 10 days.
Some mesodermal tissues were composed of both stained and unstained cells. This indicates homoiogenetic induction by the primarily induced part of the ectoderm on the other half. The neural and epidermal tissues in the explants were composed of stained cells only, except in one case. We conclude that the neural tissues are derived from cells not placed in contact with the swimbladder and that they are induced by the primarily induced part of the ectoderm.  相似文献   

7.
Differentiation tendency and the inducing ability of the presumptive ectoderm of newt early gastrulae were examined after treatment with activin A at a high concentration (100 ng/ml). The activin-treated ectoderm differentiated preferentially into yolk-rich endodermal cells. Combination explants consisting of three pieces of activin-treated ectoderm formed neural tissues and axial mesoderm along with endodermal cells. However, the neural tissue was poorly organized and never showed any central nervous system characteristics. When the activin-treated ectoderm was sandwiched between two sheets of untreated ectoderm, the sandwich explants differentiated into trunk-tail or head structures depending on the duration of preculture of activin-treated ectoderm in Holtfreter's solution. Short-term (0–5 h) precultured ectoderm induced trunk-tail structures accompanied by axial organs, alimentary canal and beating heart. The arrangement of the explant tissues and organs was similar to that of normal embryos. However, archencephalic structures, such as forebrain and eye, were lacking or deficient. On the other hand, long-term (10–25 h) precultured ectoderm induced archencephalic structures in addition to axial organs. Lineage analysis of the sandwich explants using fluorescent dyes revealed that the activin-treated ectoderm mainly differentiated into endodermal cells and induced axial mesoderm and central nervous system in the untreated ectoderm. These results suggest that activin A is one of the substances involved in triggering endodermal differentiation and that the presumptive ectoderm induced to form endoderm displays trunk-tail organizer or head organizer effects, depending on the duration of preculture.  相似文献   

8.
The diffusibility of the vegetalizing factor was examined by a transfilter culture using an ethanol-fixed swimbladder of the crucian carp ( Carassius auratus ) as the inductor and presumptive ectoderm from gastrulae of Cynops pyrrhogaster as the responding tissue. Nucleopore filters, about 12–14 μm thick, with nominal pore sizes of 0.05, 0.1, 0.6, 0.8, 3.0 and 8.0 μm were interposed between the interacting tissues. The responding pieces of ectoderm were removed from the assemblies after contact for 0.5, 1, 3, or 24 hr and cultured in Holtfreter's solution for 10 days at 20°C.
The inductions observed were almost entirely mesodermal, although masses of endoderm-like yolky cells were seen in explants and neural tissues in a few cases. Filter membranes with pores of 0.05 to 8.0 μm did not interfere with the vegetalizing effect.
Under an electron microscope, small cytoplasmic cones of the responding cells of the presumptive ectoderm were observed in the pores of the interposed filter after 3 hr's contact. The cones grew longer as the cultivation time increased, but even after 24 hr there was no contact between the interacting tissues. Since 3 hr's contact between the interacting tissues was sufficient to cause full vegetalization on the transfilter culture with the swimbladder, the formation of the cytoplasmic outgrowths had no significance in the induction.  相似文献   

9.
The organization center of Cynops pyrrhogaster was divided into Parts 1, 2 and 3 of equal size (0.3×0.4 mm2) with presumptive fates as pharyngeal, pharyngeal+prechordal+trunk notochord, and trunk-tail notochord, respectively. Movements and changes in size and shape of each part were followed through gastrulation. Differentiation tendencies of each part were examined under three conditions: I, isolated; II, sandwiched with presumptive ectoderm; 111, sandwiched with presumptive ectoderm after preculture in isolation for various times. In I, Parts 2 and 3 differentiated into dorsal mesoderm. In II, each part induced dorsal mesoderm and neural tissues, the frequency being highest in Part 2 and lowest in Part 3. In III, Parts 1 and 2 realized their presumptive fates, through changes in inductive capacities from trunk-tail to head. This change progressed rapidly in Part 1, and slowly in Part 2. Part 3 required induction by neighbouring Part 2 to realize its presumptive fate. Changes of inductive capacity of Parts 1 and 2 respectively, were chronologically similar in normal development and in preculture experiments. Lastly, the primary presumptive pharyngeal zone at blastula was proposed to act as an initiator of the organization center, its programmed information being transmitted to Part 2, and then to Part 3.  相似文献   

10.
The forehead epidermis of the stage 18–20 R. japonica embryo includes the hatching gland cell (HGC) which contains cell-specific secretory granules. The cilia cell (CC) and common epidermal cell (CEC) constitute the epidermis of the entire body surface, in addition to the forehead region.
Culture of superficial epidermal explants from various embryonic portions at various developmental stages revealed that HGCs are derived from cells localized on the neural crest in the stage 13a (early neural plate) embryo. When explants from the presumptive HGC area were treated with 1 ug/ml actinomycin D (AMD), the formation of secretory granules in HGCs was inhibited either by continuous treatment from stage 13 or by an 8-hr treatment at stage 13b. Similarly, the ciliogenesis in CCs was inhibited. The differentiation of CECs was entirely unaffected by any of the AMD treatment. After release from AMD, mucous vesicles, characteristic of the CEC, were formed in cells whose differentiation into HGC and CC had been suppressed by the antibiotic. Thread complexes and clumps of coiled strings were found in the nuclei of AMD-affected cells.
It is concluded that the DNA-dependent RNA syntheses which direct secretory granule formation in the HGC and ciliogenesis in the CC occur during a limited period at stage 13b, viz. , 20 hr before their cytodifferentiation becomes appreciable.  相似文献   

11.
Mesoderm formation in the presumptive trunk organizer was analyzed in gastrulae of Cynops pyrrhogaster. The presumptive trunk organizer showed little or no mesodermal differentiation in the beginning gastrula (0 h embryo). But as soon as the presumptive trunk organizer came into contact with the newly invaginated cranial archenteron roof, it rapidly formed mesoderm. This suggests that this differentiation was brought about by an inductive effect of the underlying cranial archenteron roof. For investigation of this possibility, the presumptive trunk organizer of 0 h embryos (Tr-0) and the newly invaginated cranial archenteron roof (presumptive pharyngeal endoderm and prechordal plate) of successive stages were cultured in isolation and by the sandwich technique. The newly invaginated presumptive pharyngeal endoderm and prechordal plate had no effect on mesoderm formation of the presumptive trunk organizer, and mesodermal differentiation of the combinations was similar to that of the Tr-0 alone. On the other hand, results showed that the prechordal plate, which came into contact with the still uninvaginated presumptive trunk organizer, stimulated dorsalisation of the weakly mesodermized trunk organizer. Based on these results, the stepwise process of mesoderm formation in the trunk organizer is discussed.  相似文献   

12.
The differentiation and organizer activity of newt ectoderm treated with activin A was studied in explantation and transplantation experiments. In the explantation experiments, ectoderm dissected from late morulae–early gastrulae stage embryos treated with a high concentration of activin A (100 ng/mL) formed only yolk-rich endodermal cells. Mesodermal tissues, such as notochord and muscle, were seldom found in these explants. When they were transplanted into the blastocoele of other early gastrulae, they formed part of the endoderm of the host embryo and induced a secondary axis with only posterior characters (including axial mesoderm and neural tissues). In contrast, whole secondary axes were induced when activin-treated ectoderm was transplanted into the ventral marginal zone (VMZ) of early blastulae. The transplanted pieces invaginated by themselves and differentiated into foregut structures including pharynx, stomach, and liver. These phenomena were also observed in experiments in which presumptive foregut was used instead of activin-treated ectoderm. These findings show that activin-treated ectoderm can act as the complete organizing center in Cynops .  相似文献   

13.
Analysis of the course of differentiation of combinants between the presumptive prechordal plate (PcP) and presumptive ectoderm (PE) by time-lapse filming showed that the PcP of early gastrulae has the capacity to induce mesoderm (notochord, muscle cells and migrating cells) in the PE. The mesoderm-inducing capacity of the PcP decreases sharply during gastrulation. Following invagination in the mid-gastrula, the PcP completely loses its mesoderm-inducing capacity. This change also occurred when the PcP of the earliest gastrula was aged in vitro for 18 hr. This shows that the mesoderm-inducing capacity of the PcP decreases autonomously with aging.
PE transplanted into the presumptive trunk organizer region of the dorsal marginal zone of the earlist gastrula, became mesodermized within 12 hr. It is clear that this mesodermization of the transplanted PE is due to "tangential induction" from the PcP. The stepwise formation of the trunk organizer in Cynops pyrrhogaster is discussed in consideration of these results.  相似文献   

14.
Mesoderm and Neural Inductions on Newt Ectoderm by Activin A   总被引:6,自引:6,他引:0  
Mesoderm-inducing activity of human recombinant activin A was examined on presumptive ectoderm of the Japanese newt, Cynops pyrrhogaster , by using the animal cap assay, Activin A induced neural tissues and mesodermal tissues such as brain, neural tube, notochord, muscle, mesenchyme, coelomic epithelium and blood-like cells after 14 days cultivation. These tissues were induced by activin A at concentrations ranging from 0.5– 100 ng/ml. Dose-dependent inducing activity of activity A on newt ectoderm was slightly different from that on other animals, including Xenopus . Wide range of concentration of activin A (0.5– 100 ng/ml) could induce the neural tube, notochord, mesenchyme and coelomic epithelium on the newt ectoderm. Though the percentage of induced explants (two out of 23 explants, 8.7%) was low, the pulsating heart was induced. This paper showed first that activin could induce the mesodermal and neural tissues in newt presumptive ectoderm. Since activin homologues were present In Xenopus and chick embryos, it is likely that activin may be one of the natural inducers in a wide range of species.  相似文献   

15.
When presumptive ectoderm is treated with high concentrations of activin A, it mainly differentiates into axial mesoderm (notochord, muscle) in Xenopus and into yolk-rich endodermal cells in newt (Cynops pyrrhogaster). Xenopus ectoderm consists of multiple layers, different from the single layer of Cynops ectoderm. This multilayer structure of Xenopus ectoderm may prevent complete treatment of activin A and subsequent whole differentiation into endoderm. In the present study, therefore, Xenopus ectoderm was separated into an outer layer and an inner layer, which were individually treated with a high concentration of activin A (100 ng/mL). Then the differentiation and inductive activity of these ectodermal cells were examined in explantation and transplantation experiments. In isolation culture, ectoderm treated with activin A formed endoderm. Ectodermal and mesodermal tissues were seldom found in these explants. The activin-treated ectoderm induced axial mesoderm and neural tissues, and differentiated into endoderm when it was sandwiched between two sheets of ectoderm or was transplanted into the ventral marginal zone of other blastulae. These findings suggest that Xenopus ectoderm treated with a high concentration of activin A forms endoderm and mimics the properties of the organizer as in Cynops.  相似文献   

16.
Induction and patterning of the telencephalon in Xenopus laevis   总被引:1,自引:0,他引:1  
We report an analysis of the tissue and molecular interplay involved in the early specification of the forebrain, and in particular telencephalic, regions of the Xenopus embryo. In dissection/recombination experiments, different parts of the organizer region were explanted at gastrula stage and tested for their inducing/patterning activities on either naive ectoderm or on midgastrula stage dorsal ectoderm. We show that the anterior dorsal mesendoderm of the organizer region has a weak neural inducing activity compared with the presumptive anterior notochord, but is able to pattern either neuralized stage 10.5 dorsal ectoderm or animal caps injected with BMP inhibitors to a dorsal telencephalic fate. Furthermore, we found that a subset of this tissue, the anterior dorsal endoderm, still retains this patterning activity. At least part of the dorsal telencephalic inducing activities may be reproduced by the anterior endoderm secreted molecule cerberus, but not by simple BMP inhibition, and requires the N-terminal region of cerberus that includes its Wnt-binding domain. Furthermore, we show that FGF action is both necessary and sufficient for ventral forebrain marker expression in neuralized animal caps, and possibly also required for dorsal telencephalic specification. Therefore, integration of organizer secreted molecules and of FGF, may account for patterning of the more rostral part of Xenopus CNS.  相似文献   

17.
Neural induction through the presumptive notochord was tested by means of the sandwich method. The result disclosed that the notochord was a potent inducer of neural tissues not only in the ectoderm of gastrula but also in the ventral ectoderm of neurula and early tail-bud embryos. Structures formed by the induced neural tissue varied greatly. They can be classified into three types. (1) Tubular: the neural tissues induced in explants containing abundant mesenchymes always formed long tubular structures. The shapes of these neural tubes showed considerable variation; moreover, they were atypical and none formed the regular structure of the spinal cord. This type was most frequent, being found in about 50% of the explants. (2) Inverted: this type was produced when the explant contained mesenchymal component. Consequently, the epithelium of explants was missing. Nevertheless, a considerable mass of neural tissue was always induced. It was noticed that the induced neural tissues were invariably inside out; this type was found in about 30% of the explants. (3) Archencephalic: this was the only type to form the regular structure, i.e., the archencephalon. Formation of the archencephalon was limited solely to those explants containing only a few mesenchymes; this type was found in about 20% of the cases. As described above, it was found that the neural tissues induced by the same inducer of the notochord were not uniform but varied in type. Further, it was shown that the types of neural tissue differed according to different quantities of the surrounding mesenchyme. Based on these facts, it is to be concluded that it is not the inducer of notochord, but the surrounding mesenchyme that is of primary importance for the determination of the types of neural tissue.  相似文献   

18.
B Kablar 《Tissue & cell》1999,31(1):28-33
In this report the organizer activity of follistatin was examined by transplantation of pieces of the animal cap, isolated from embryos injected with follistatin mRNA, into the blastocoele of an early host blastula (Einsteck explants). Host embryos developed a secondary axis consisting of myotomes, notochord and neural tube of the trunk or tail character. Secondary structures that are characteristic of a head, such as cement glands or brain and eyes, did not develop in these experiments. These findings suggested that follistatin may have the trunk and tail organizer activity, while it was not possible to reconstitute its head organizer activity.  相似文献   

19.
Summary An artificially mesodermalized ectoderm (mE) shows the same properties as the organizer: chordamesoderm formation and neural induction. The neural-inducing activity of the mE was inhibited by treatment with protein synthesis inhibitors (cycloheximide and puromycin) and a specific inhibitor of protein glycosylation (tunicamycin). These antibiotics also inhibited chordamesoderm differentiaton, especiallly that of notochord. Newly synthesized proteins of the mE were compared with those of presumptive ectoderm (pE) using two-dimensional PAGE. There were differences in relative amounts of many protein spots. These results suggest that neural-inducing activity is related to glycoproteins synthesized during the early phase of mesodermalization.  相似文献   

20.
BMP-4 has been implicated in the patterning of the Dorsal-Ventral axis of mesoderm and ectoderm. In this study, we describe the posteriorizing effect of BMP-4 on the neural inducing ability of dorsal mesoderm (dorsal lip region) in Xenopus gastrulae. Dorsal lip explants dissected from stage 10.25 embryos retained anterior inducing ability when precultured for 6 hrs until sibling embryos reach stage 12. When the dorsal lips from stage 10.25 embryos were treated with a range of BMP-4 concentrations, posterior tissues were induced in adjacent ectoderm in a dose-dependent manner. Thus activin-treated explants able to act as head inducers can also induce posterior structures in the presence of BMP-4. To investigate whether BMP-4 directly affects the inducing ability of dorsal mesoderm, we blocked the BMP-4 signaling pathway by injection of mRNA encoding a truncated form of the BMP-4 receptor (tBR) mRNA. Under these conditions, activin-treated explants induced anterior tissues following BMP-4 treatment. Taken together, these results indicate that BMP-4 may affect the head inducing ability of dorsal mesoderm and confer trunk-tail inducing ability during Xenopus gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号