首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A geometric morphometric analysis of hominin upper first molar shape   总被引:1,自引:1,他引:0  
Recent studies have revealed interesting differences in upper first molar morphology across the hominin fossil record, particularly significant between H. sapiens and H. neanderthalensis. Usually these analyses have been performed by means of classic morphometric methods, including the measurement of relative cusp areas or the angles defined between cusps. Although these studies have provided valuable information for the morphological characterization of some hominin species, we believe that the analysis of this particular tooth could be more conclusive for taxonomic assignment. In this study, we have applied geometric morphometric methods to explore the morphological variability of the upper first molar (M(1)) across the human fossil record. Our emphasis focuses on the study of the phenetic relationships among the European middle Pleistocene populations (designated as H. heidelbergensis) with H. neanderthalensis and H. sapiens, but the inclusion of Australopithecus and early Homo specimens has helped us to assess the polarity of the observed traits. H. neanderthalensis presents a unique morphology characterized by a relatively distal displacement of the lingual cusps and protrusion in the external outline of a large and bulging hypocone. This morphology can be found in a less pronounced degree in the European early and middle Pleistocene populations, and reaches its maximum expression with the H. neanderthalensis lineage. In contrast, modern humans retain the primitive morphology with a square occlusal polygon associated with a round external outline.  相似文献   

2.
This report documents greater variability in early hominin first molar dental trait frequencies than previous research indicated. Specifically, frequencies of several M1 dental traits that previously appeared to uniquely characterize Paranthropus are shown here to resemble those of the A. afarensis sample from Hadar. Like Paranthropus, A. afarensis from Hadar has a high frequency of cusp 6 and a low frequency of the protostylid. Paranthropus and A. afarensis are also not statistically significantly different in their frequencies of LM1 cusp 7, although this cusp is actually absent in the latter. Both groups differ significantly from A. africanus in their frequencies of these traits. Based on the developmental biology of molar cusp patterns, we suggest that the morphological similarities between Paranthropus and the Hadar sample may be homoplasies.  相似文献   

3.
In two historic longitudinal growth studies, Moorrees et al. (Am J Phys Anthropol 21 (1963) 99-108; J Dent Res 42 (1963) 1490-1502) presented the "mean attainment age" for stages of tooth development for 10 permanent tooth types and three deciduous tooth types. These findings were presented graphically to assess the rate of tooth formation in living children and to age immature skeletal remains. Despite being widely cited, these graphical data are difficult to implement because there are no accompanying numerical values for the parameters underlying the growth data. This analysis generates numerical parameters from the data reported by Moorrees et al. by digitizing 358 points from these tooth formation graphs using DataThief III, version 1.5. Following the original methods, the digitized points for each age transition were conception-corrected and converted to the logarithmic scale to determine a median attainment age for each dental formation stage. These values are subsequently used to estimate age-at-death distributions for immature individuals using a single tooth or multiple teeth, including estimates for 41 immature early modern humans and 25 immature Neandertals. Within-tooth variance is calculated for each age estimate based on a single tooth, and a between-tooth component of variance is calculated for age estimates based on two or more teeth to account for the increase in precision that comes from using additional teeth. Finally, we calculate the relative probability of observing a particular dental formation sequence given known-age reference information and demonstrate its value in estimating age for immature fossil specimens.  相似文献   

4.
The maxillary first molar crowns of 48 male and 38 female Canadian Inuit (Eskimos) were analyzed three-dimensionally by using moiré contourography methods. Cusp heights were significantly higher in males while the mesial and distal marginal ridges were more proximally placed in males. The metacone and the oblique ridge appeared to be better developed in the males. Comparison of the present results with published results for Dutch and Japanese indicated that the Japanese and Inuit had lower cusps that were more widely spaced than the Dutch. Correlation coefficients suggest that height measurements were positively correlated as were linear measurements. However, there were few significant correlations between height and linear determinations, suggesting that the development of the "width" of a crown is nearly independent of the development of the height of the cusps and crown.  相似文献   

5.
Evolutionary biologists are largely polarized in their approaches to integrating microevolutionary and macroevolutionary processes. Neo-Darwinians typically seek to identify population-level selective and genetic processes that culminate in macroevolutionary events. Epigeneticists and structuralists, on the other hand, emphasize developmental constraints on the action of natural selection, and highlight the role of epigenetic shifts in producing evolutionary change in morphology. Accordingly, the ways in which these paradigms view and address morphological contrasts between classes of related organisms differ. These paradigms, although seldomly explicitly stated, emerge in paleoanthropology as well. Considerations of postcranial morphological contrasts between archaic and modern humans typically fall into one of two broad interpretive models. The first derives from the neo-Darwinian perspective and holds that evolution in the postcranial skeleton was largely mosaic (operating in a particulate manner), and that temporal change in specific traits informs us about behavioral shifts or genetic evolution affecting isolated anatomical regions (i.e., adaptive behavioral inferences can be made from comparative studies of individual trait complexes). The alternative model follows from the epigeneticist paradigm and sees change in specific postcranial traits as correlated responses to change in overall body form (involving shifts in regulation of skeletal growth, or selective and developmental responses to broad adaptive shifts). By this view, integration of functional systems both constrains and directs evolution of various traits, and morphological contrasts inform us about overall change in body form related to change in such things as overall growth patterns, climatic adaptation, and technological dependency. These models were tested by confirmatory factor analysis using measures of upper body form and upper limb morphological traits in Eurasian Neandertal and early modern fossils and recent human samples. Results indicate (1) a model of morphological integration fits the data better than a model of no integration, but (2) this integration accounts for less than half of the variance in upper limb traits, suggesting a high degree of tolerance for particulate evolution in the context of an integrated upper body plan. Significant relationships were detected between joint shapes and body size, between humeral shaft shape and body size and chest shape, and between measures of biomechanical efficiency and robusticity. The observed morphological differences between late archaic and early modern humans reflect particulate evolution in the context of constraints imposed by genetic and morphological integration. While particulate approaches to interpreting the fossil record appear to be justified, attention must also be paid to delineating the nature and extent of morphological integration and its role in both constraining and producing observed patterns of variation between groups. Confirmatory factor analysis provides a means of examining trait covariance matrices, and serves as a useful method of identifying patterns of integration in morphology. © 1996 Wiley-Liss, Inc.  相似文献   

6.
The evolution of carnassial teeth in mammals, especially in the Carnivora, has been subject of many morphometric and some dental topographic studies. Here, we use a combination of dental topographic analysis (Dirichlet normal energy) and 3D geometric morphometrics of less and high carnassialized lower teeth of carnivoran, dasyuromorph and hyaenodont taxa. Carnassial crown curvature, as indicated by Dirichlet normal energy, is high in lesser carnassialized teeth and low in higher carnassialized teeth, where it is influenced by the reduction of crown features such as cusps and crests. PC1 of the geometric morphometric analysis is linked to enlargement of the carnassial blade, reduction of the talonid crushing basin and an increasingly asymmetric cervix line with an enlarged mesial flexure in more carnassialized teeth. Distribution of PC1 values further indicates that along the tooth row of dasyuromorphs (m2–m4) and hyaenodonts (m1–m3) the most distal carnassial is the most carnassialized (principal carnassial), and in most taxa with overall higher carnassialized teeth, carnassialization successively increases from the anterior to the posterior tooth position along the tooth row. PC2 indicates that a longitudinal elongated carnassial is present in caniforms and in unspecialized feliforms, which separates these taxa in morphospace from all dasyuromorphs, hyaenodonts and specialized feliforms. An ancestral state reconstruction shows that this longitudinal elongation may be a plesiomorphic ancestral state for the Carnivora, which is different from the Dasyuromorphia and the Hyaenodonta. This elongation, enabling the presence of a longitudinally aligned carnassial blade as well as a complete talonid basin, might have provided the Carnivora with an advantage in terms of adaptive versatility.  相似文献   

7.
The evolution of the teeth in hominins is characterized by, among other characters, major changes in root morphology. However, little is known of the evolution from a plesiomorphic, ape‐like root morphology to the crown hominin morphology. Here we present a study of the root morphology of the Miocene Chadian hominin Sahelanthropus tchadensis and its comparison to other hominins. The morphology of the whole lower dentition (I1–M3) was investigated and described. The comparison with the species Ardipithecus kaddaba and Ardipithecus ramidus indicates a global homogeneity of root morphology in early hominins. This morphology, characterized notably by a reduction of the size and number of the roots of premolars, is a composite between an ape‐like morphology and the later hominin morphology. Trends for root evolution in hominins are proposed, including the transition from a basal hominoid to extant Homo sapiens. This study also illustrates the low association between the evolution of tooth root morphology and the evolution of crowns in hominins. Am J Phys Anthropol 153:116–123, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
Two contradictory theories of human cognitive evolution have been developed to model how, when, and among what hominid groups behavioral modernity emerged. The first model, which has long been the dominant paradigm, links these behavioral innovations to a cultural “revolution” by anatomically modern humans in Europe at around 40,000 years ago, coinciding with the first arrival of our species in this region.1–4 According to this model, the sudden and explosive character of this change is demonstrated by the appearance in the archeological record of previously unseen carvings, personal ornaments, musical instruments, depictions on cave walls, and new stone and bone technology. A variant of this model sees behavioral modernity resulting from a rapid biological change, a brain mutation producing no apparent change in skull anatomy, which occurred in Europe or, more probably, in Africa at ca. 50,000 years ago.56.  相似文献   

11.
The scarcity of Neandertal remains from Southern Europe hampers our understanding of Neandertal variability, and can bias interpretations about Neandertal geographic variation. To address this issue, it is often important to reassess human remains that, while discovered decades ago, remain relatively unknown to the scientific community. In this contribution, we provide a complete state‐of‐the‐art comparative morphometric analysis of Leuca I, an unworn left second upper molar (LM2) discovered in 1958 in Bambino's Cave (near Santa Maria di Leuca, Apulia, Italy) and attributed to Homo neanderthalensis. Our study includes comparisons of standard metric and nonmetric data, a 2D image analysis of the occlusal surface and measurements of both 2D and 3D enamel thickness and dental tissue proportions. Although Leuca I follows the Neandertal M2s trend in some morphometric aspects (i.e., small relative occlusal polygon area), in other cases it falls to the higher end (for 3D average enamel thickness) or even outside (for 3D‐relative enamel thickness) the Neandertal M2 variability, thus increasing the known Neandertal range of variation. Am J Phys Anthropol 152:300–305, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
doi: 10.1111/j.1741‐2358.2012.00648.x Biometric ratio in estimating widths of maxillary anterior teeth derived after correlating anthropometric measurements with dental measurements Objective: To correlate dental measurements i.e. combined mesiodistal width of six maxillary anterior teeth with facial measurements i.e. inner canthal distance, interpupillary distance and intercommissural width and acquire a biometric ratio to serve as a preliminary guide in selection of the maxillary anterior teeth. Background: In the absence of pre‐extraction records, the resultant denture can lead to patient dissatisfaction towards the aesthetic appeal of their dentures. The maxillary anterior teeth play a pivotal role in denture aesthetics. Various techniques and biometric ratios have been described in literature for selection of the maxillary anteriors. This study derives a biometric ratio for the same, obtained after correlating anthropometric measurements with dental measurements. Materials and methods: Two standardized digital photographs of the face were generated; one, when the facial muscles were relaxed and the other, when the subject was smiling; thereby, revealing the maxillary anterior teeth upto the canine tip. Inner canthal distance, interpupillary distance, intercommissural distance, distance between the tips of the maxillary canines and distance between the distal surfaces of the canines were measured. On the cast, the distance between tips of maxillary canines and distance between distal surfaces of maxillary canines were noted. The data was analysed using Spearman’s rank correlation coefficient. Results: A high correlation was found between the intercommissural measurement with distance between the tips of the canines on the photograph and between the tips of the canines on the cast with the interpupillary distance, giving a biometric ratio of 1:1.35 and 1:1.41 respectively. The least correlation was between the inner canthal distance and the tips of the canines measured on the photograph. Conclusions: Extra oral anthropometric measurements of the interpupillary distances and the intercommissural distances with the help of standardised photographs can help us determine the combined widths of the anterior teeth accurately, thus aiding their selection in the absence of pre‐extraction records.  相似文献   

13.
14.
Phenotypic variation in the shape of the first upper molar among 595 mice, representing nine extant and three extinct taxa of the genus Mus , was studied with thin-plate spline analysis. The reliability of classification of individual specimens into known groups based on their molars varied from 75 to 100%, depending on group and method used. Including 13 sliding semilandmarks to the analysis improved the detection of different kinds of size and shape variation as well as visualization of shape differences between studied groups. Correlation between phylogenetic and morphometric distances suggested about 80% contribution of phylogenetic inertia to the molar shape variation; moreover, the importance of localized versus global shape changes was similar in the detection of phylogenetic signals. Finally, shape changes along individual evolutionary lineages were revealed, suggesting a few cases of reversals, convergence and/or retention of ancestral shape. The evolution of mouse molars has thus been driven by random effects of drift together with stabilizing selection and convergence.  相似文献   

15.
崔娅铭 《人类学学报》2018,37(2):228-240
额骨是连接面颅和脑颅的重要头骨组成部分,关于现代各个人种的额骨形态是否存在明显的差别,这些人种额骨的基本形态如何,变异范围以及与其他人群的相似与差异等问题都尚未完全厘清。而额骨的很多特征由于技术手段的限制很难进行测量和准确的描述比较。鉴于这些问题,本文将采用基于三维表面半标志点的几何形态测量方法,研究东亚现代人额骨的表面形态及其变异范围,并与欧洲,东南亚,美洲,非洲以及澳洲的现代人群的额骨形态进行对比,为对比不同人群的形态研究建立基础数据。结果显示,额骨形态的变异主要表现在:1)额骨鳞部的额结节和正中矢状脊共同向前隆起或回缩以及相对额骨宽度;2)眉弓的粗壮程度,额结节的侧向发育程度和正中矢状脊的发育情况。为了进一步揭示中国现代人与其他人群在额骨形态上的关系,本文还探讨了额骨大小在不同人群中的差异。结果显示,东亚现代人和欧洲现代人额骨中心大小值的中位数最大,澳洲现代人的最小。东亚现代人的额骨形态与澳洲,欧洲和非洲均有非常显著的差异。为了检验额骨的形态是否与遗传距离一致,作者还对额骨形态距离和遗传距离做了相关性分析。结果显示,不同人群的额骨形态与其遗传距离呈显著的相关性,说明本研究结果中不同人群额骨形态上的差异大小可以在一定程度上反映其遗传距离,并可能进一步反映人群历史。东亚现代人的额骨平均形态在与各个人群比较过程中表现出一致性特征,可能在一定程度上反映了东亚现代人群的进化过程是相对独立的。未来额骨的三维几何形态测量可通过扩大标本数量进一步探讨不同性别和不同演化阶段之间的差异。  相似文献   

16.
This article is the third of a series that explores hominin dental crown morphology by means of geometric morphometrics. After the analysis of the lower second premolar and the upper first molar crown shapes, we apply the same technique to lower first premolar morphology. Our results show a clear distinction between the morphology seen in earlier hominin taxa such as Australopithecus and African early Homo, as well as Asian H. erectus, and more recent groups such as European H. heidelbergensis, H. neanderthalensis, and H. sapiens. The morphology of the earlier hominins includes an asymmetrical outline, a conspicuous talonid, and an occlusal polygon that tends to be large. The morphology of the recent hominins includes a symmetrical outline and a reduced or absent talonid. Within this later group, premolars belonging to H. heidelbergensis and H. neanderthalensis tend to possess a small and mesiolingually-displaced occlusal polygon, whereas H. sapiens specimens usually present expanded and centered occlusal polygons in an almost circular outline. The morphological differences among Paranthropus, Australopithecus, and African early Homo as studied here are small and evolutionarily less significant compared to the differences between the earlier and later homin taxa. In contrast to the lower second premolar and the upper first molar crown, the inclusion of a larger hominin sample of lower first premolars reveals a large allometric component.  相似文献   

17.
Despite several decades of research, there remains a lack of consensus on the extent to which bonobos are paedomorphic (juvenilized) chimpanzees in terms of cranial morphology. This study reexamines the issue by comparing the ontogeny of cranial shape in cross-sectional samples of bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) using both internal and external 3D landmarks digitized from CT scans. Geometric morphometric methods were used to quantify shape and size; dental-maturation criteria were used to estimate relative dental age. Heterochrony was evaluated using combined size-shape (allometry) and shape-age relationships for the entire cranium, the face, and the braincase. These analyses indicate that the bonobo skull is paedomorphic relative to the chimpanzee for the first principal component of size-related shape variation, most likely via a mechanism of postformation (paedomorphosis due to initial shape underdevelopment). However, the results also indicate that not all aspects of shape differences between the two species, particularly in the face, can be attributed to heterochronic transformation and that additional developmental differences must also have occurred during their evolution.  相似文献   

18.
It is demonstrated in this paper that before we can hope to formulate phylogenetic relationships between and amongst fossil hominoid material it is first necessary to sex the material accurately. In order to determine whether the morphological and morphometrical variability seen in fossil specimens is due to sexual or inter species dimorphism, it is necessary to calibrate fossil specimens against extant hominoid species' morphologies. Only after fossil specimens have been sexed is it possible to differentiate between morphologies that are related to sex and those that are species specific. This will help reduce fossil misallocation. A morphometric analysis of extant and fossilProconsul hominoid material is presented. Each fossil specimen has been sexed according to symplesiomorphic sex morphologies as defined in this paper. After the fossil specimens have been sexed they are analyzed using multivariate statistics. The identification of differing sex patterns within the specimens examined here suggests that a new species ofProconsul may have to be considered.  相似文献   

19.
Abstract

In this study, leaf morphology was assessed in a mixed oak stand (western France) using two geometric morphometric (landmark and outline) datasets and one dataset of 19 leaf measures. Adult oaks (817 oaks), comprising four white oak species (Quercus petraea, Q. robur, Q. pubescens and Q. pyrenaica), were sampled for DNA extraction and genetic analysis (nuclear microsatellites). Leaf morphology was assessed on 336 oaks, comprising pure species and hybrids as determined by genetic assignment. This comparative study of oak leaf morphology, based on the use of two free size geometric morphometric methods and a set of leaf measurements, combined with the genetic assignment of individuals to pure species or hybrids, provided information about the differences among species and the intermediate leaf morphology of their hybrids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号