首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
D G Chung  P N Lewis 《Biochemistry》1986,25(18):5036-5042
Chicken histone H4, labeled separately at Met-84 with N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonic acid and 5-(iodoacetamido)fluorescein, was reassociated with unlabeled histones H2A, H2B, and H3 and 146 base pairs of DNA to produce fluorescently labeled nucleosomes having physical characteristics virtually the same as those of native core particles. Four types of particles were prepared containing respectively unlabeled H4, dansylated H4, fluoresceinated H4, and a mixture of the two labeled H4 molecules. Quantitative singlet-singlet energy-transfer measurements were carried out to determine changes in the distance between the two Met-84 H4 sites within the same nucleosome following conformational transitions which we have reported earlier. In the ionic strength range 0.1-100 mM NaCl, the distance between these sites is less than 2 nm except at 1 mM. Between 100 and 600 mM monovalent salt the distance separating the donor and acceptor fluors at Met-84 H4 increases to 3.8 nm. The conformational change centered around 200 mM NaCl is cooperative. Our results and those of others indicate that there is little unfolding of the histone octamer, at least around Met-84 H4, in the entire ionic strength range studied. A mechanism involving the rotation of the globular portion of H4 is proposed to account for this transition which occurs at physiological ionic strengths.  相似文献   

2.
The preparation of hybrid histone octamers with wheat histone H2A variants replacing chicken H2A in the chicken octamer is described. The fidelity of the reconstituted hybrid octamers was confirmed by dimethyl suberimidate cross-linking. Polyglutamic-acid-mediated assembly of these octamers on long DNA and subsequent micrococcal nuclease (MNase) digestion demonstrated that, whereas chicken octamers protected 167 base-pairs (representing 2 full turns of DNA), hybrid histone octamers containing wheat histone H2A(1) with its 19 amino acid residue C-terminal extension protected an additional 16 base pairs of DNA against nuclease digestion. The protection observed by hybrid histone octamers containing wheat histone H2A(3) with both a 15 residue N-terminal and a 19 residue C-terminal extension was identical with that observed with H2A(1)-containing hybrid histone octamers with only the 19 residue C-terminal extension. These results suggest that the role of the C-terminal extension is to bind to DNA of the "linker" region. The thermal denaturation of chicken and hybrid core particles was identical in 10 mM-Tris.HCl.20 mM-NaCl, 0.1 mM-EDTA, confirming that there was no interaction between the basic C-terminal extension and DNA of the core particle. Denaturation in EDTA, however, showed that hybrid core particles had enhanced stability, suggesting that the known conformational change of core particles at very low ionic strength allows the C-terminal extension to bind to core particle DNA under these conditions. A model accounting for the observed MNase protection is presented.  相似文献   

3.
Changes in the conformational state of chromatin core particles from chicken erythrocytes were studied by both immunochemical and biophysical methods as a function of pH and ionic strength. When the pH of core particles in a solution of ionic strength 3, 60 or 220 mM was lowered from pH 7.5, a sharp transition in the circular dichroism spectrum of DNA monitored between 320 and 260 nm was observed at pH 6.65. This change in DNA ellipticity was totally reversible. Binding to core particles of antibodies specific for histones H2B, H2A, H3 and for the IRGERA (synthetic C-terminal) peptide of H3 was used to follow changes in histone antigenicity. Binding was studied in the pH range 7.5-5.35, and at ionic strength of 60 and 220 mM. A change in reactivity of some histone epitopes was observed around pH 6.2–6.5. However, the changes observed by circular dichroism and antibody binding pertain to different components of chromatin subunits and they probably reflect independent phenomena. The alteration in accessibility of these determinants at the surface of core particles was completely reversible and was dependent on ionic strength. The conformation changes in core particles occurring near physiological ionic strength and pH may reflect dynamic changes in chromatin structure that possess functional significance.  相似文献   

4.
Neutron scattering studies of nucleosome structure at low ionic strength   总被引:1,自引:0,他引:1  
Ionic strength studies using homogeneous preparations of chicken erythrocyte nucleosomes containing either 146 or 175 base pairs of DNA show a single unfolding transition at about 1.5 mM ionic strength as determined by small-angle neutron scattering. The transition seen by some investigators at between 2.9 and 7.5 mM ionic strength is not observed by small-angle neutron scattering in either type of nucleosome particle. The two contrasts measured (H2O and D2O) indicate that only small conformational changes occur in the protein core, but the DNA is partially unfolded below the transition point. Patterson inversion of the data and analysis of models indicate that the DNA in both types of particle is unwinding from the ends, leaving about one turn of supercoiled DNA bound to the histone core in approximately its normal (compact) conformation. The mechanism of unfolding appears to be similar for both types of particles and in both cases occurs at the same ionic strength. The unfolding observed for nucleosomes in this study is in definite disagreement with extended superhelical models for the DNA and also disagrees with models incorporating an unfolded histone core.  相似文献   

5.
Chicken erythrocyte nucleosome core particles can be dissociated quantitatively into histones (H3, H4)2 bound to 146 base pairs of DNA, and 2(H2A, H2B). Reconstitution of core particles from the two components produces an 85% yield of particles which neutron scattering studies show to be accurate stoichiometrically and indistinguishable from native core particles: the radii of gyration of the shape, the protein components and the DNA components of the particles are 4.02 nm, 3.3 nm and 4.95 nm respectively. The largest distance and most probable distance which can be drawn in the particles are 11.5 nm and 4.3 nm respectively. The molecular weight of the particles is identical to that of control 'native' core particles. All of these values, within limits of error, are the same as known values for 'native' core particles. These experiments confirm the essential role of histones H3 and H4 in the initial organisation of core-particle structure, make possible the manufacture of perfectly pure and homogeneous core-particle preparations and allow the 100% incorporation of labelled or modified histones. Neutron scattering studies of core particles at high contrast (in D2O and H2O) have been carried out over a range of ionic strengths and pH. No change in structure is detected down to pH 5.5 in 20 mM NaCl or down to ionic strength 2.0 mM at pH 7.  相似文献   

6.
Chromatin core particles containing 146 base pairs of DNA have been found to undergo a single defined transition below 10 mM ionic strength as studied by both sedimentation velocity and tyrosine fluorescence anisotropy. A method is described for the preparation of such core particles from chicken erythrocytes with greater than 50% yield.  相似文献   

7.
The nucleosome core binds more than two molecules of HMG17 at low ionic strength (8.9 mM Tris-HCl/8.9 mM boric acid/0.25 mM Na2EDTA, pH 8.3). Circular dichroism of the complexes showed only minor conformational changes of the nucleosome core DNA on binding of HMG17, with no detectable change in the histone secondary structure. The fluorescence of N-(3-pyrene) maleimide bound to -SH groups at Cys-110 of H3 histones in the core particle suggested that the structure of the histone octamer assembly changed little upon binding of HMG17 to the nucleosome. These observations support the idea that even a high level of HMG17 binding, e.g., four HMGs per nucleosome, alone, does not open up the core particle.  相似文献   

8.
Effect of DNA length on the nucleosome low salt transition.   总被引:3,自引:3,他引:0  
The effect of DNA length on the low salt unfolding transition of nucleosomes has been studied by the use of fluorescently labeled histones. Nucleosomes were formed by the reconstitution of bulk DNA fragments averaging 173 and 250 base pairs in length. These nucleosomes exhibited a conformational change in a transition centered at about 7 mM ionic strength, very different from that observed for the standard 145 bp nucleosomes (1-3mM). In addition, the conformational change of the 173 and 250 bp nucleosomes involves twice as many ions as that of the 145 bp nucleosomes.  相似文献   

9.
We have shown previously that lac repressor binds specifically and quantitatively to lac operator restriction fragments which have been complexed with histones to form artificial nucleosomes (203 base pair restriction fragment) or core particles (144 base pair restriction fragment. We describe here a quantitative method for determining the equilibrium binding affinities of repressor for these lac reconstitutes. Quantitative analysis shows that the operator-histone reconstitutes may be grouped into two affinity classes: those with an affinity for repressor close to that of naked DNA and those with an affinity 2 or more orders of magnitude less than that of naked DNA. All particles in the lac nucleosome preparations bind repressor with high affinity, but the lac core particle preparations contain particles of both high and low affinities for repressor. Formaldehyde cross-linking causes all high-affinity species to suffer a 100-fold decrease in binding affinity. In contrast, there is no effect of cross-linking on species of low affinity. Therefore, the ability of a particle to be bound tightly by repressor depends on a property of the particle which is eliminated by cross-linking. Control experiments have shown that chemical damage to the operator does not accompany cross-linking. Therefore, the property sensitive to cross-linking must be the ability of the particle to change conformation. We infer that the particles of low native affinity, like cross-linked particles, are of low affinity because of an inability to facilitate repressor binding by means of this conformational change. Dimethyl suberimidate cross-linking experiments show that histone-histone cross-linking is sufficient to preclude high-affinity binding. Thus, the necessary conformational change involves a nucleosome histone core event. We find that the ability of a particle to undergo a repressor-induced facilitating conformational change appears to depend on the position of the operator along the DNA binding path of the nucleosome core. We present a general model which proposes that nucleosomes are divided into domains which function differentially to initiate conformational changes in response to physiological stimuli.  相似文献   

10.
Radioactive iodine has been used to probe the relative reactivities of nucleosomal H4 tyrosine residues under various conditions of subphysiological ionic strength. We observe that tyrosine 72 of H4, which is not reactive over the range 20-150 mM NaCl, becomes the predominant site of iodination within H4 when nucleosomes are subjected to conditions of very low ionic strength. Conversely, the other H4 tyrosine residues, which are reactive within nucleosomes in solutions of moderate ionic strength (20-150 mM NaCl), become nonreactive when the ionic strength is reduced. This "flip-flop" in the H4 iodination pattern is the manifestation of a reversible nucleosomal conformational change. A method is presented which enables the conformational status of H4 in nucleosomes to be determined by simply electrophoresing the histones on a Triton gel after probing nucleosomes with labeled iodine. Using this technique, we demonstrate that the presence of H1 on one side of the nucleosome stabilizes a histone core domain on the other side so that all four tyrosines of H4 are maintained in their physiological ionic strength conformation even under conditions of no added salt.  相似文献   

11.
Ionic effects on the structure of nucleoprotein cores from adenovirus   总被引:2,自引:0,他引:2  
Nucleoprotein cores, prepared from adenovirus type 5 with a deoxycholate/heat treatment, consist of the viral DNA and two major internal proteins. The core particles exhibit structural characteristics that are highly reproducible and dependent on their ionic environment. In low-ionic-strength buffer, the cores had a sedimentation coefficient of 180 S and appeared in the electron microscope as homogeneous particles with distinct centers from which numerous arms and loops radiated. Condensation of the cores was induced by Mg2+ or Ca2+ over the range 0 to 1 mM. The sedimentation coefficient increased monotonically with divalent cation concentration, reaching a maximum of 405 S in 1 mM Mg2+. A corresponding condensation in the core structure was observed by electron microscopy. Increasing concentrations of NaCl also produced a conformational change in the cores, with an almost linear increase in sedimentation velocity up to 274 S in 0.04 M NaCl. Between 0.05 and 1.0 M NaCl, the cores were insoluble. In 2.0 M NaCl, the cores were again soluble with an s20,w of 228 S. Under all ionic strength conditions in which the cores were soluble, both core proteins remained bound to the DNA.  相似文献   

12.
Reconstructed complexes of the inner histones (H2A, H2B, H3, H4) and a variety of DNAs were digested with micrococcal nuclease to yield very homogeneous populations of core nucleosomes (nu 1). Nucleosomes containing Micrococcus luteus DNA (72% G+C); chicken DNA (43% G+C), Clostridium perfringens DNA (29% G+C); or poly(A-dT.poly(dA-dT) have been examined by circular dichroism, thermaldetenaturation, electron microscopy, and DNAse I digestion. Circular dichroism spectra of all particles show a typically suppressed ellipticity at 260--280 nm and a prominent alpha-helix signal at 222 nm. All particles show biphasic melting except nu 1 (dA-dT), which show three prominent melting transitions at ionic strength less than or equal to 1 mM. DNAse I digestion of nu 1 (dA-dT) produces a ladder of DNA fragments fiffering in lengthy by one base residue. nu 1 (dA-dT) contain 146 base pairs of DNA and exhibit an average DNA helix pitch of 10.4-10.5 bases per turn. There appear to be two regions of different DNA pitch wihtin nu 1 (dA-dT). It is suggested that the two regions of DNA pitch might correspond to the two regions of the melting profiles.  相似文献   

13.
In this study 1H NMR has been used to investigate the conformational state of DNA in nucleosome core particles. The nucleosome core particles exhibit partially resolved low field (10-15 ppm) spectra due to imino protons in Watson-Crick base pairs (one resonance per GC or AT base pair). To a first approximation, the spectrum is virtually identical with that of protein-free 140 base pair DNA, and from this observation we draw two important conclusions: (i) Since the low field spectra of DNA are known to be sensitive to conformation, the conformation of DNA in the core particles is essentially the same as that of free DNA (presumably B-form), (ii) since kinks occurring at a frequency at 1 in 10 or 1 in 20 base pairs would result in a core particle spectrum different from that of free DNA we find no NMR evidence supporting either the Crick-Klug or the Sobell models for kinking DNA around the core histones. Linewidth considerations indicate that the rotational correlation time for the core particles is approximately 1.5 X 10(-7) sec, whereas the end-over-end tumbling time of the free 140 base pair DNA is 3 X 10(-7) sec.  相似文献   

14.
We have used a model system composed of tandem repeats of Lytechinus variegatus 5 S rDNA (Simpson, R. T., Thoma, F., and Brubaker, J. M. (1985) Cell 42, 799-808) reconstituted into chromatin with chicken erythrocyte core histones to investigate the mechanism of chromatin assembly. Nucleosomes are assembled onto the DNA template by mixing histone octamers and DNA in 2 M NaCl followed by stepwise dialysis into very low ionic strength buffer over a 24-h period. By 1.0 M NaCl, a defined intermediate composed of arrays of H3.H4 tetramers has formed, as shown by analytical and preparative ultracentrifugation. Digestion with methidium propyl EDTA.Fe(II) indicates that these tetramers are spaced at 207 base pair intervals, i.e. one/repeat length of the DNA positioning sequence. In 0.8 M NaCl, some H2A.H2B has become associated with the H3.H4 tetramers and DNA. Surprisingly, under these conditions DNA is protected from methidium propyl EDTA.Fe(II) digestion almost as well as in the complete nucleosome, even though these structures are quite deficient in H2A.H2B. By 0.6 M NaCl, nucleosome assembly is complete, and the MPE digestion pattern is indistinguishable from that observed for oligonucleosomes at very low ionic strength. Below 0.6 M NaCl, the oligonucleosomes are involved in various salt-dependent conformational equilibria: at approximately 0.6 M, a 15% reduction in S20,w that mimics a conformational change observed previously with nucleosome core particles; at and above 0.1 M, folding into a more compact structure(s); at and above 0.1 M NaCl, a reaction involving varying amounts of dissociation of histone octamers from a small fraction of the DNA templates. In low ionic strength buffer (less than 1 mM NaCl), oligonucleosomes are present as fully loaded templates in the extended beads-on-a-string structure.  相似文献   

15.
Melting experiments were conducted on 22 DNA dumbbells as a function of solvent ionic strength from 25-115 mM Na(+). The dumbbell molecules have short duplex regions comprised of 16-20 base pairs linked on both ends by T(4) single-strand loops. Only the 4-8 central base pairs of the dumbbell stems differ for different molecules, and the six base pairs on both sides of the central sequence and adjoining loops on both ends are the same in every molecule. Results of melting analysis on the 22 new DNA dumbbells are combined with our previous results on 17 other DNA dumbbells, with stem lengths containing from 14-18 base pairs, reported in the first article of this series (Doktycz, Goldstein, Paner, Gallo, and Benight, Biopoly 32, 1992, 849-864). The combination of results comprises a database of optical melting parameters for 39 DNA dumbbells in ionic strengths from 25-115 mM Na(+). This database is employed to evaluate the thermodynamics of singlet, doublet, and triplet sequence-dependent interactions in duplex DNA. Analysis of the 25 mM Na(+) data reveals the existence of significant sequence-dependent triplet or next-nearest-neighbor interactions. The enthalpy of these interactions is evaluated for all possible triplets. Some of the triplet enthalpy values are less than the uncertainty in their evaluation, indicating no measurable interaction for that particular sequence. This finding suggests that the thermodynamic stability of duplex DNA depends on solvent ionic strength in a sequence-dependent manner. As a part of the analysis, the nearest-neighbor (base pair doublet) interactions in 55, 85, and 115 mM Na(+) are also reevaluated from the larger database.  相似文献   

16.
Studies in vitro of binding high-mobility-group (HMG) proteins to nucleosomal particles that differ in their DNA contents reflect several aspects pertinent to their function in vivo. Two molecules of HMG 14 or 17 are accommodated by particles with 140 or 180 base pairs of DNA whereas HMG 1 or 2 are only bound by the larger specimens irrespective of the presence of HMG 14/17. It is concluded that one molecule of HMG 1 or 2 binds to the 40 base pairs of linker DNA whereas the HMG 14 or 17 molecules associate with the nucleosomal core. At physiological ionic strength, HMG 14 binding is cooperative, probably by triggering a conformational change in the nucleosomal particle. The phenomenon has been studied by two independent techniques. Besides the common gel-electrophoretic system, a centrifugation assay is described, which permits the derivation of a Hill coefficient nH = 1.3 and dissociation constants in the range of 30-90 nM at 0.15 M NaCl, pH 6.8.  相似文献   

17.
Melting of two DNA duplexes of known nucleotide sequences containing 14 and 36 base pairs has been investigated within the range of ionic strength from 0.2 to 0.02 M [Na+]. The values of melting enthalpy of base pair delta H were measured for the duplex of 14 base pairs in the solutions of varying ionic strength. The values of delta H were obtained from slopes of linear plots of reciprocal melting temperature versus logarithm of oligonucleotide chains concentration. In the aforementioned range the decrease of the ionic strength causes a 5% decrease of delta H. By fitting the theoretical profiles to the experimental ones the ionic strength dependence of the nucleation constant beta was measured for DNA fragments of various lengths. With the decrease of the ionic strength the value of beta drops 2 times for the short duplex and 8 times for the long one.  相似文献   

18.
The chromatin structure in solution has been studied by the flow linear dichroism method (LD) in a wide range of ionic strengths. It is found that increasing the ionic strength from 0.25 mM Na2EDTA, pH 7.0 to 100 mM NaCl leads to a strong reduction of the LD amplitude of chromatin and inversion of the LD sign from negative to positive at 2 mM NaCl. Chromatin exhibits a positive LD maximum value at 10-20 mM NaCl. These data enable us to conclude that in very low ionic strength (0.25 mM Na2EDTA) the nucleosome discs are oriented with their flat faces more or less parallel to the chromatin filament axis. Increasing ionic strength up to 20 mM NaCl leads to reorientation of the nucleosome discs and to formation of chromatin structures with nucleosome flat faces inclined to the fibril axis. A conformational transition of that kind is not revealed in H1-depleted chromatin. The condensation of the chromatin filaments with increasing concentration of NaCl from 20 mM to 100 mM slightly influences the orientation of the nucleosomes.  相似文献   

19.
Removal of histones H1 and H5 from chicken erythrocyte mononucleosomes results in a large increase of the negative electric birefringence and dichroism, and of the relaxation times, towards the values observed for mononucleosomal DNA. Cross-linking with dimethylsuberimidate does not yield important changes in the electro-optical properties of mononucleosomes, provided that the reaction is performed at low ionic strength. We suggest that in the absence of H1/H5 the linker DNA is flexible, and that this DNA tail is unwound at low ionic strength and responsible for most of the negative anisotropy of these particles. Bipolar pulse experiments revealed that the orientation mechanism of chromatosomes and H1/H5-depleted nucleosomes is predominantly of the induced dipole type.  相似文献   

20.
Thermal denaturation of nucleosomal core particles.   总被引:32,自引:18,他引:14       下载免费PDF全文
Thermal denaturation of very homogeneous preparations of core particles from chicken erythrocyte chromatin is studied by several techniques. The change in absorbance, which is very closely paralleled by changes in heat capacity, which is very closely paralleled by changes in heat capacity, is a biphasic process with inflexions at 60 degrees C and 74 degrees C. In contrast, isolated DNA of the same length denatures in a single transition around 44 degrees C. Monitoring the circular dichroism of the cores during thermal denaturation reveals biphasic changes in the secondary structure of the DNA, preceding the base unstacking by 10 degrees C in the first and 3 degrees C in the second phase. However, measurable alterations in the secondary structure of the histones are confined to the second phase with a melting temperature at 71 degrees C. Increase in the ionic strength of the buffer from 1 mM to 10 mM leads to almost monophasic melting curves as measured by absorbance and CD, while not causing any measurable conformational changes at room temperature. The melting of core particles is interpreted as a denaturation of about 40 base pairs in the first phase, followed by a massive breakdown of the native structure of a tight histone-DNA complex, which frees the remaining 100 base pairs for unstacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号