首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kasbekar DP  Madigan S  Katz ER 《Genetics》1983,104(2):271-277
Nystatin-resistant mutations exhibit extreme sensitivity to 1.3 mm coumarin. The mutations fall into three complementation groups so it is possible to select for nonallelic mutations conferring sensitivity to coumarin by selection on nystatin-containing nutrient agar plates. Complementation between such coumarin-sensitive mutations allows the selection of diploids on coumarin-containing nutrient agar. Two of the nystatin resistance genes, nysB and nysC, have been mapped tentatively to the previously unmarked linkage group V.  相似文献   

2.
The DNA sequence of the region located downstream from the kanamycin resistance gene of Tn5 up to the right inverted repeat IS50R has been determined. This completes the determination of the sequence of Tn5 which is 5818 bp long. The 2.7 Kb central region contains three resistance genes: the kanamycin-neomycin resistance gene, a gene coding for resistance to CL990 an antimitotic-antibiotic compound of the bleomycin family and a third gene that confers streptomycin resistance in some bacterial species but is cryptic in E. coli. A Tn5* mutant able to express streptomycin resistance in E. coli was isolated. With this mutant, it was demonstrated that in E. coli the expression of the three resistance genes is coordinated in a single operon.  相似文献   

3.
Abstract During growth of Streptomyces niveus wild-type in the novobiocin production medium CDM the resistance of mycelia to novobiocin rises from about 25 μg/ml to over 200 μg/ml. ( S. lividans , a novobiocin-sensitive strain, is resistant to approx. 10 μg/ml novobiocin.) The initial period of low level resistance extends from the time of inoculation of the culture until approx. 70 h when the culture is still in the growth phase. High level resistance is initiated before the start of novobiocin production and rises rapidly to a maximum level beyond the end of the growth phase. The rise in pH of the unbuffered CDM medium which occurs during S. niveus fermentation was shown not to be the cause of the change in novobiocin resistance. However, mycelia-free CDM from S. niveus cultures expressing high level novobiocin resistance was shown to contain a factor which induced high level novobiocin resistance in germinating S. niveus spores. Kinetic studies revealed that the inducer first appears in the culture medium before the switch to high level resistance begins and reaches its highest concentration before resistance reaches its maximum level.  相似文献   

4.
The development of insecticide resistance in the presence of migration   总被引:6,自引:1,他引:5  
A model of insecticide resistance including migration is developed in order to try to understand the large variations in time required for insects to develop resistance. It is found that there is a critical migration rate above which resistance is greatly retarded. The model also suggests that density dependence is important in determining the optimal insecticide kill rate and that a larger kill rate will probably delay the onset of resistance.  相似文献   

5.
REX Consortium 《PloS one》2007,2(12):e1275
Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expected. We tested this by analysing co-authorship and co-citation networks using a database of 187 articles published from 1977 to 2006 concerning models of resistance evolution to all major classes of pesticides and drugs. These analyses identified two main groups. One group, led by ecologists or agronomists, is interested in agricultural crop or stock pests and diseases. It mainly uses a population genetics approach to model the evolution of resistance to insecticidal proteins, insecticides, herbicides, antihelminthic drugs and miticides. By contrast, the other group, led by medical scientists, is interested in human parasites and mostly uses epidemiological models to study the evolution of resistance to antibiotic and antiviral drugs. Our analyses suggested that there is also a small scientific group focusing on resistance to antimalaria drugs, and which is only poorly connected with the two larger groups. The analysis of cited references indicates that each of the two large communities publishes its research in a different set of literature and has its own keystone references: citations with a large impact in one group are almost never cited by the other. We fear the lack of exchange between the two communities might slow progress concerning resistance evolution which is currently a major issue for society.  相似文献   

6.
We show with a model that variation in environmental stress between generations facilitates the evolution of stress resistance through assortative mating. Stress induces delayed maturation of susceptible phenotypes, segregating their fertile period from resistant phenotypes. Assortment of mates enhances the responsiveness of populations to natural selection by inflating genetic variance. Thus, positive selection and inflated genetic variance in stressful environments can cause a strong evolutionary increase in resistance. By contrast, benign environments do not segregate phenotypes, and the random mating among phenotypes deflates genetic variance, leading to a weaker response to selection against resistance, assuming that resistance is costly. When environments vary randomly from benign to stressful, populations respond asymmetrically to negative and positive selection. This asymmetry (1) accelerates fixation of a resistance allele if resistance is generally favoured (stressful generations more frequent) but delays the loss of the allele if it is generally disfavoured (benign generations more frequent), and (2) it can push a resistance allele to fixation even when long‐term costs modestly exceed benefits. When resistance alleles pleiotropically delay mating, stress‐induced random mating has complementary effects. Serial autocorrelation in the stressor amplifies these effects. These results suggest a novel mechanism for the persistence of resistance polymorphisms.  相似文献   

7.
Malaria is a devastating disease that still claims over half a million lives every year, mostly in sub–Saharan Africa. One of the main barriers to malaria control is the evolution and propagation of drug-resistant mutant parasites. Knowing the genes and respective mutations responsible for drug resistance facilitates the design of drugs with novel modes of action and allows predicting and monitoring drug resistance in natural parasite populations in real-time. The best way to identify these mutations is to experimentally evolve resistance to the drug in question and then comparing the genomes of the drug-resistant mutants to that of the sensitive progenitor parasites. This simple evolutive concept was the starting point for the development of a paradigm over the years, based on the use of the rodent malaria parasite Plasmodium chabaudi to unravel the genetics of drug resistance in malaria. It involves the use of a cloned parasite isolate (P. chabaudi AS) whose genome is well characterized, to artificially select resistance to given drugs through serial passages in mice under slowly increasing drug pressure. The end resulting parasites are cloned and the genetic mutations are then discovered through Linkage Group Selection, a technique conceived by Prof. Richard Carter and his group, and/or Whole Genome Sequencing. The precise role of these mutations can then be interrogated in malaria parasites of humans through allelic replacement experiments and/or genotype-phenotype association studies in natural parasite populations. Using this paradigm, all the mutations underlying resistance to the most important antimalarial drugs were identified, most of which were pioneering and later shown to also play a role in drug resistance in natural infections of human malaria parasites. This supports the use of P. chabaudi a fast-track predictive model to identify candidate genetic markers of resistance to present and future antimalarial drugs and improving our understanding of the biology of resistance.  相似文献   

8.
褐飞虱抗药性研究现状   总被引:9,自引:2,他引:9  
褐飞虱Nilaparvata lugens(Stal)对杀虫剂产生抗药性是其近年来暴发频繁的重要原因。文章综述国内外关于褐飞虱抗药性的研究成果,包括褐飞虱抗性测定方法、抗药性的发展、交互抗性、抗性遗传、抗性机理及抗性治理等。田间褐飞虱种群对新烟碱类药剂产生不同程度的抗药性,其中对吡虫啉产生高水平到极高水平抗性,对氯噻啉和噻虫嗪分别产生中等水平和低水平的抗药性,对呋虫胺和烯啶虫胺仍然处于敏感性阶段。此外,褐飞虱种群对噻嗪酮(昆虫生长调节剂)产生低水平到中等水平抗性。长期大面积使用化学药剂是褐飞虱产生抗药性的重要原因。因此,必须加强褐飞虱的抗性治理,以延缓其抗药性进一步发展。  相似文献   

9.
A Study on the Electrical Resistance of the Frog Sartorius Muscle   总被引:4,自引:1,他引:3       下载免费PDF全文
Four different methods of measuring the resistance of a muscle fiber have been applied to the frog sartorius muscle. The methods, in which the resistance of the microelectrode entered the calculation of the effective resistance of the fiber, resulted in values which were 8 times higher than the resistance values obtained with methods independent of the electrode resistance. A simple cable model of a muscle fiber could not account for the discrepancy in the effective resistance found in these measurements; therefore, an enlarged cable model for a muscle fiber has been proposed, and its biological implications have been discussed. The effective resistance (measured with the two different groups of methods) decreased when the potassium concentration in the bath increased. Using the proposed enlarged cable model for the interpretation of these results, it is shown that not only the membrane resistance but also the myoplasmic resistance decreases with an increasing potassium concentration in the Ringer solution.  相似文献   

10.
The evolution of multiple antibiotic resistance is an increasing global problem. Resistance mutations are known to impair fitness, and the evolution of resistance to multiple drugs depends both on their costs individually and on how they interact—epistasis. Information on the level of epistasis between antibiotic resistance mutations is of key importance to understanding epistasis amongst deleterious alleles, a key theoretical question, and to improving public health measures. Here we show that in an antibiotic-free environment the cost of multiple resistance is smaller than expected, a signature of pervasive positive epistasis among alleles that confer resistance to antibiotics. Competition assays reveal that the cost of resistance to a given antibiotic is dependent on the presence of resistance alleles for other antibiotics. Surprisingly we find that a significant fraction of resistant mutations can be beneficial in certain resistant genetic backgrounds, that some double resistances entail no measurable cost, and that some allelic combinations are hotspots for rapid compensation. These results provide additional insight as to why multi-resistant bacteria are so prevalent and reveal an extra layer of complexity on epistatic patterns previously unrecognized, since it is hidden in genome-wide studies of genetic interactions using gene knockouts.  相似文献   

11.
Bacterial evolution and the cost of antibiotic resistance.   总被引:3,自引:0,他引:3  
Bacteria clearly benefit from the possession of an antibiotic resistance gene when the corresponding antibiotic is present. But do resistant bacteria suffer a cost of resistance (i.e., a reduction in fitness) when the antibiotic is absent? If so, then one strategy to control the spread of resistance would be to suspend the use of a particular antibiotic until resistant genotypes declined to low frequency. Numerous studies have indeed shown that resistant genotypes are less fit than their sensitive counterparts in the absence of antibiotic, indicating a cost of resistance. But there is an important caveat: these studies have put resistance genes into naive bacteria, which have no evolutionary history of association with the resistance genes. An important question, therefore, is whether bacteria can overcome the cost of resistance by evolving adaptations that counteract the harmful side-effects of resistance genes. In fact, several experiments (in vitro and in vivo) show that the cost of antibiotic resistance can be substantially diminished, even eliminated, by evolutionary changes in bacteria over rather short periods of time. As a consequence, it becomes increasingly difficult to eliminate resistant genotypes simply by suspending the use of antibiotics.  相似文献   

12.
Modelling the hydrodynamic resistance of bordered pits   总被引:1,自引:0,他引:1  
Previous studies of the hydrodynamics of plant stems have shown that resistance to flow through bordered pits on the side walls of tracheids makes up a significant proportion of their total resistance, and that this proportion increases with tracheid diameter. This suggests a possible reason why tracheids with a diameter above around 100 microm have failed to evolve. This possibility has been investigated by obtaining an estimate for the resistance of a single pit, and incorporating it into analytical models of tracheid resistance and wood resistivity. The hydrodynamic resistance of the bordered pits of Tsuga canadensis was investigated using large-scale physical models. The importance of individual components of the pit were investigated by comparing the resistance of models with different pore sizes in their pit membrane, and with or without the torus and border. The estimate for the resistance of a real bordered pit was 1.70x10(15) Pa s m(-3). Resistance of pits varied with morphology as might be predicted; the resistance was inversely proportional to the pore size to the power of 0.715; removing the torus reduced resistance by 28%, while removal of the torus and border together reduced it by 72%. It was estimated that in a 'typical tracheid' pit resistance should account for 29% of the total. Incorporating the results into the model for the resistivity of wood showed that resistivity should fall as tracheid diameter increases. However, to minimize resistance wider tracheids would also need to be proportionally much longer. It is suggested that the diameter of tracheids in conifers is limited by upper limits to cell length or cell volume. This limitation is avoided by angiosperms because they can digest away the ends of their cells to produce long, wide vessels composed of many short cells.  相似文献   

13.
1 Resistance to insecticides is a model system for studying adaptation. Although selection for resistance is always strong in areas and seasons where populations are exposed to insecticides, costs of resistance, which may only be expressed in the absence of insecticide use, will shape how quickly resistance will evolve.
2 We used sperm precedence to measure the shifts in resistance to imidacloprid in a natural population during winter diapause in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Because adult beetles overwinter with viable autumn sperm, but sperm from spring matings take precedence over stored sperm, we used the difference in resistance of springmated and autumn-mated overwintered females to estimate the shift in resistance during the winter. Offspring of autumn-mated females were 2.7- or 2.5-fold more resistant compared with offspring from spring-mated females in two replicate trials.
3 We also measured the resistance of late summer and spring emergent adults in fields treated and untreated with imidacloprid in the first year. Adults from the treated field were 13.7-fold more resistant and adults from the untreated field were 2.6-fold more resistant compared with the next spring's emergers.
4 These large costs of resistance observed in the field and inferred from resistance declines during diapause help to explain the observation that imidacloprid resistance has increased only slowly over the decade of widespread use against this species, and how insecticide resistance in general can cycle annually.  相似文献   

14.
Insecticide resistance genes have developed in a wide variety of insects in response to heavy chemical application. Few of these examples of adaptation in response to rapid environmental change have been studied both at the population level and at the gene level. One of these is the evolution of the overproduced esterases that are involved in resistance to organophosphate insecticides in the mosquito Culex pipiens. At the gene level, two genetic mechanisms are involved in esterase overproduction, namely gene amplification and gene regulation. At the population level, the co-occurrence of the same amplified allele in distinct geographic areas is best explained by the importance of passive transportation at the worldwide scale. The long-term monitoring of a population of mosquitoes in southern France has enabled a detailed study to be made of the evolution of resistance genes on a local scale, and has shown that a resistance gene with a lower cost has replaced a former resistance allele with a higher cost.  相似文献   

15.
Rice crops are severely damaged by diseases caused by bacterial, fungal, and viral pathogens. Application of host resistance to these pathogens is the most economical and environmentally friendly approach to solve this problem. Quantitative resistance conferred by quantitative trait loci (QTL) is a valuable resource for the improvement of rice disease resistance. Although numerous resistance QTL against rice diseases have been identified, these resources have not been used effectively in rice improvement because the genetic control of quantitative resistance is complex and the genes underlying most of the resistance QTL remain unknown. This review focuses on the latest molecular progress in quantitative disease resistance in rice. This knowledge will be helpful for characterizing more resistance QTL and turning the quantitative resistance into actual resources for rice protection.  相似文献   

16.
细菌耐药性是21世纪国际关注的重要问题,也是全球面临的重大挑战.肠杆菌科细菌是医院感染的重要病原菌之一.近年来,随着抗生素的大量使用,多种肠杆菌科耐药菌,尤其是多重耐药肠杆菌开始大量出现,对人类健康形成了日益严重的威胁.细菌可以通过耐药基因突变或水平转移的方式获得耐药性,通常情况下,可以通过已知的耐药机制预测相应的耐药...  相似文献   

17.
It was shown earlier (Laisk, Oja, and Kull, 1980) that differentstomata on a barley leaf are open to different degrees. Therefore,stomatal conductance is a quantity which is statistically distributedover a large range in the geometry of one leaf. Gas exchangemeasurements based on transpiration rates represent the averagevalue of stomatal conductance in the leaf chamber. The conventionalmethod of calculating mesophyll resistance involves subtractingstomatal resistance from total leaf resistance. It is incorrect,however, to average the stomatal resistance before this subtraction.Therefore, the conventional method for calculating the mesophyllresistance contains an error as it neglects the statisticaldistribution of stomatal apertures. The error is significantwhen the diffusion resistance between neighbouring substomatalcavities is large and when stomatal apertures vary over a widerange. Key words: Mesophyll resistance, Stomatal conductance, Statistics  相似文献   

18.
Antibiotic resistance is an increasing threat in hospitals and both morbidity and mortality from infections are greater when caused by drug-resistant organisms. Whilst hospitals are universally blamed for this increase, there is an insufficient appreciation of external sources of resistance, such as when patients are admitted to hospitals from long-term care facilities in the community. The use of antibiotics in family practice and animal husbandry has also been linked to drug resistance being encountered in the hospital setting. Justifiable hospital antibiotic use, which can be life saving, may lead to 'collateral damage' with the emergence of resistance in non-target bacteria in the bowel, for example, with subsequent spread by cross-infection. At a management level, antibiotic resistance can have a significant impact on the ability of hospitals to maintain services since cohorting of patients and ward closures from outbreaks add to continuing bed shortages and waiting lists. Hospital laboratories must review their standard operating procedures since some resistance mechanisms may be missed by current methods of antibiotic susceptibility testing. With increasing public concern from press reports of 'multiresistant Staphylococcus aureus killer virus' and other drug-resistant organisms, there will inevitably be a push by national authorities for more surveillance data on antibiotic resistance; however, the cost-effectiveness of different surveillance strategies should be considered. Clinical governance and risk management are dominant themes in the National Health Service and hospital hygiene and antibiotic resistance are likely to feature prominently in audits related to these themes in the near future.  相似文献   

19.
Starvation resistance is a trait often associated with longevity. Animals with increased longevity frequently show elevated starvation resistance and vice versa. Consequently, both life-history traits are thought to share genetic and physiological mechanisms, such as increased fat content and lowered metabolic rate. Here, we present results from 20 generations of selection on Drosophila melanogaster for increased starvation resistance at the time of adult eclosion. We observe that starvation resistance can be the result of more than one mechanism, all associated with an increase in fat resources. In general, metabolic rate is lowered under starved conditions relative to fed conditions. Metabolic rate in the starvation resistant lines is generally higher than in control lines under starved conditions. Starvation resistant flies are able to sustain a higher metabolic rate for a longer period of time when food is unavailable. This implies depletion of the increased fat reserves. However, longevity was not consistently affected by selection for increased starvation resistance. Similarly, paraquat resistance differed between selection lines and did not associate with starvation resistance, but rather with longevity. The results are discussed in relation to previous reported results on starvation resistance and its relation with mechanisms of aging and longevity.  相似文献   

20.
迁移对害虫抗性演化的影响   总被引:3,自引:0,他引:3  
利用抗性群体遗传模型研究了迁移对害虫抗性演化的影响。模拟结果表明,迁入比例对害虫种群抗性演化的影响存在一定的阈值。若迁入个体全为敏感(SS)纯合子,而其比例又在阈值以下时,这种迁入对抗性演化无延缓作用;迁入比例在阈值以上时,随比例加大,对抗性延缓作用逐渐增强,加大到某一值时,抗性演化可完全被阻止;若迁入个体携有R基因,则迁入比例在阈值以下时,会促进迁入区害虫种群的抗性演化;在阈值以上时,可延缓或完全阻止害虫种群的抗性演化。处理区害虫种群原有个体的迁出,可加强SS个体迁入对害虫种群抗性演化的影响,而使携R基因的个体的迁入影响减弱。以小菜蛾Plutella xylostella为模型昆虫所作的试验结果表明,模型模拟与验证试验的结果具有较好的一致性,说明抗性模拟模型可用于害虫种群的抗性演化预测和分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号