首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sun Y  Giraudier O  Garde VL 《Biopolymers》2005,77(5):257-263
Various fibrin gels were prepared with a microbial transglutaminase under miscellaneous conditions. The gels were characterized through their rheological properties. The influence of fibronectin addition and that of covalent bonding on the viscoelastic characteristics were evaluated. Gel elasticity is proportional to fibrinogen concentration but shows a nonlinear dependence on transglutaminase concentration. Additional crosslink of fibronectin in fibrin gels has no effect on the rheological character of the matrix. Dissolution kinetics in concentrated urea solutions evidences the role of covalent bonds on gel stability. The rheological properties and gel stability are discussed in relation with the enzyme-catalyzed covalent bonding. The microbial enzyme reactions are compared to those of FXIII and tissue transglutaminases.  相似文献   

2.
This Article investigates different types of networks formed from tilapia fish gelatin (10% w/w) in the presence and absence of the enzymatic cross-linker microbial transglutaminase. The influence of the temperature protocol and cross-linker concentration (0-55 U mTGase/g gelatin) was examined in physical, chemical, and hybrid gels, where physical gels arise from the formation of triple helices that act as junction points when the gels are cooled below the gelation point. A combination of rheology and optical rotation was used to study the evolution of the storage modulus (G') over time and the number of triple helices formed for each type of gel. We attempted to separate the final storage modulus of the gels into its chemical and physical contributions to examine the existence or otherwise of synergism between the two types of networks. Our experiments show that the gel characteristics vary widely with the thermal protocol. The final storage modulus in chemical gels increased with enzyme concentration, possibly due to the preferential formation of closed loops at low cross-linker amount. In chemical-physical gels, where the physical network (helices) was formed consecutively to the covalent one, we found that below a critical enzyme concentration the more extensive the chemical network is (as measured by G'), the weaker the final gel is. The storage modulus attributed to the physical network decreased exponentially as a function of G' from the chemical network, but both networks were found to be purely additive. Helices were not thermally stabilized. The simultaneous formation of physical and chemical networks (physical-co-chemical) resulted in G' values higher than the individual networks formed under the same conditions. Two regimes were distinguished: at low enzyme concentration (10-20 U mTGase/g gelatin), the networks were formed in series, but the storage modulus from the chemical network was higher in the presence of helices (compared to pure chemical gels); at higher enzyme concentration (30-40 U mTGase/g gelatin), strong synergistic effects were found as a large part of the covalent network became ineffective upon melting of the helices.  相似文献   

3.
Ephemeral gels, called Enzgels, successively undergo sol-gel and then gel-sol transition under the action of two antagonistic enzymes, transglutaminase and protease. Molecular and macroscopic properties of Enzgels are directly dependent on the enzymatic activities and their ratios. This work studies the characteristics of Enzgels according to the specificity of three different proteases: thermolysin, trypsin, and collagenase. The experiments are conducted using three types of gelatin networks, one created only by triple helices, one only by covalent bonds, and the last network by both triple helices and covalent bonds. Rheology and polarimetry measurements show that the evolution of Enzgels is directly dependent on the specificity of the protease used. Moreover, gelatin network conformation has different influences according to this proteolytic specificity. Collagenase is not very sensitive to gelatin conformation, whereas trypsin is very limited by the presence of covalent bonds. This study considerably expands the knowledge of Enzgel properties.  相似文献   

4.
An equation of Lighthill's is used to calculate sperm thrusts. They have values in the range 5–350 pN, depending on species. The limitations of this approach are discussed and comparison is made with the measured thrust for human sperm. The effect of sperm thrusts of this magnitude on covalent bonds and reversible bonds is discussed. Sperm cannot break covalent bonds, but can reduce the lifetime of reversible bonds.
The structure and physical properties of the zona pellucida are examined in relation to sperm penetration. The evidence suggests that sperm cannot penetrate it solely by force. A model for sperm penetration is elaborated in which the conjunctive application of thrust and a soluble enzyme leads to strain-induced proteolysis and the formation of the penetration slit. The potential mechanism of the zona block is discussed, as is the site of the acrosome reaction. The effects of other mechanical inputs into fertilization such as stirring and swimming are examined briefly. Evidence suggests that sperm penetration of the cumulus oophorus and cervical mucus is mechanical, but that in the case of cervical mucus, it is affected by changes in the physical properties of the mucus.  相似文献   

5.
6.
Arabinoxylan (AX) samples of decreasing ferulic acid (FA) contents were chemically prepared from water-extractable wheat arabinoxylans without affecting their other structural properties. Gels were obtained from these partially feruloylated WEAX (PF-WEAX) by enzymatic covalent cross-linking of FA leading to the formation of diferulic (di-FA) and tri-ferulic acid (tri-FA). WEAX gelling ability was found related to the WEAX FA content whereas the gel structure and properties depended on the density of newly formed covalent cross-links. FA content of WEAX ranging from 1.4 to 2.3 microg/mg AX gave gels with di-FA cross-links contents from 0.20 to 0.43 microg/mg AX and G' values from 5 to 44 Pa. For WEAX gels with initial FA contents from 1.6 to 2.3 microg/mg AX, average mesh size ranging from 331 to 263 nm were calculated from swelling experiments. Cross-linking densities of gels, determined from swelling experiments, were higher than those that could be theoretically estimated from the di-FA and tri-FA content of WEAX gels. This result suggests that, in addition to di-FA and tri-FA, higher ferulate cross-linking and physical entanglements would contribute to the final WEAX gel structure.  相似文献   

7.
Sericin peptides and PVA are chemically modified with methacrylate groups to produce a covalent PVA/sericin hydrogel. Preservation of the sericin bioactivity following methacrylation is confirmed, and PVA/sericin hydrogels are fabricated for both B. mori and A. mylitta sericin. Cell adhesion studies confirm the preservation of sericin bioactivity post incorporation in PVA gels. PVA/A. mylitta gels are observed to facilitate cell adhesion to a significantly greater degree than PVA/B. mori gels. Overall, the incorporation of sericin does not alter the physical properties of the PVA hydrogels but does result in significantly improved cellular interaction, particularly from A. mylitta gels.  相似文献   

8.
The cellulose/silica hybrid biomaterials are prepared by sol–gel covalent crosslinking process. The tetraethoxysilane (TEOS) as precursor, γ-aminopropyltriethoxylsilane (APTES) as couple agent, and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) as crosslinking agent, are used in the sol–gel crosslinking process. The chemical and morphological structures of cellulose/silica covalent crosslinking hybrids are investigated with micro-FT-IR spectra, nitrogen element analysis, X-ray diffraction, SEM, AFM, and DSC. The results show that the cellulose/silica hybrids form new macromolecular structures. In sol–gel process, inorganic particles are dispersed at the nanometer scale in the cellulose host matrix, bounding to the cellulose through covalent bonds. The cellulose/silica covalent crosslinking hybrid can form good and smooth film on the cellulose. The thermal properties of organic/inorganic hybrids are improved.  相似文献   

9.
A polysaccharide consisting of mainly 1,4-linked glucose units was found associated with prion rods, which are composed mainly of insoluble aggregates of the N-terminally truncated prion protein (PrP 27-30) exhibiting the ultrastructural and tinctorial properties of amyloid. The polysaccharide differs in composition from the Asn-linked oligosaccharides and the GPI-anchor of the prion protein. Prion rods were prepared from scrapie-infected hamster brains using two different purification protocols. Prolonged digestion of rods with proteinase K reduced PrP by a factor of at least 500, leaving about 10% (w/w) of the sample as an insoluble remnant. Only glucose was obtained by acid hydrolysis of the remnant and methylation analysis showed 80% 1,4-, 15% 1,6- and 5% 1,4,6-linked glucose units. The physical and chemical properties as well as the absence of terminal glucose units indicate a very high molecular mass of the polysaccharide. No evidence was found for covalent bonds between PrP and the polysaccharide. The polysaccharide certainly contributes to the unusual chemical and physical stability of prion rods, acting like a scaffold. A potential structural and/or functional relevance of the polysaccharide scaffold is discussed.  相似文献   

10.
The relation between the chemical structure of a protein and the physical properties of a heat-set gel of that protein has been investigated. The physical properties of the gel are determined by means of mechanical experiments in which the viscoelastic properties of the gel are determined in terms of the storage shear modulus, the loss modulus and the stress-strain curve. The storage shear modulus defined the solid (elastic) character of the gel. The chemical structure of the protein and the nature of the solvent determine the nature and number of cross-links in the gel. The cross-links in gels formed by heating concentrated solutions of ovalbumin in 6M urea solutions were found to be disulfide bridges and the mechanical properties of these ovalbumin/urea gels approximated those of an ideal rubber. The latter finding enables one to calculate the number of cross-links per ovalbumin molecule from the value of the storage modulus, using the classical theory of rubber elasticity. This theory, together with the Flory-Huggins lattice model, can also be used to calculate the number of cros-links per ovalbumin molecule from the swelling behavior of ovalbumin/urea gels. The number of cross-links per ovalbumin molecule calculated from these two types of experiments are in mutual agreement and correspond with the number of thiol groups in ovalbumin. We conclude, thereforee, that theories of polymer physics can be used to relate the chemical structure of a protein to the physical properties of its gel.  相似文献   

11.
Silks are semi-crystalline solids in which protein chains are associated by intermolecular hydrogen bonding within ordered crystallites, and by entanglement within unordered regions. By varying the type of protein secondary structure within crystallites and the overall degree of molecular order within fibers, arthropods produce fibers with a variety of physical properties suited to many purposes. We characterized silk produced as a tactile stimulus during mating by the grey silverfish (Ctenolepisma longicaudata) using Fourier transform infrared spectroscopy, polarized Raman spectroscopy, gel electrophoresis and amino acid analysis. Fibers were proteinaceous—the main component being a 220 kDa protein—and were rich in Gln/Glu, Leu, and Lys. The protein structure present was predominantly random coil, with a lesser amount of beta-structure. Silk fibers could readily be solubilized in aqueous solutions of a mild chaotrope, sodium dodecyl sulfate, indicating protein chains were not cross-linked by disulfide or other covalent bonds. We conclude that entanglement is the major mechanism by which these silk proteins cohere into a solid material. We propose silks used as short-term tactile cues are subject to less stringent requirements for molecular order relative to other silks, allowing the random coil structure to be favored as an adaptation promoting maximal entanglement and adhesion.  相似文献   

12.
Increasing numbers of cell mechanotransduction studies are currently utilizing elastic substrates fabricated from polyacrylamide in the form of thin gels. Their versatility depends on the ability to ensure the appropriate gel stiffness and control the uniformity and geometry of extracellular matrix protein coating of the gel. Beginning with a brief quantitative emphasis on the elastic properties of polyacrylamide gels, we present an inexpensive and highly reproducible method for uniform coating with a wide variety of extracellular matrix proteins. We used a reducing agent, hydrazine hydrate, to modify nonreactive amide groups in polyacrylamide to highly reactive hydrazide groups that can form covalent bonds with aldehyde or ketone groups in oxidized proteins. This simple conjugation method overcomes the limitations of previously used photoactivatable cross-linkers: nonuniform coating due to nonuniformity of irradiation and technically challenging procedures for micropatterning. As demonstrated in our study of cell polarity during constrained migration, this conjugation method is especially effective in gel micropatterning by manual microcontact printing of protein patterns as small as 5 microm and enables numerous studies of constrained cell attachment and migration that were previously unfeasible due to high cost or difficulty in controlling the protein coating.  相似文献   

13.
Conditions are described that allow 32P-radiolabelling and detection of tight complexes between DNA and polypeptides by nick-translation. Prolonged nick-translation of purified bulk DNA results in radiolabelled complexes migrating on SDS-polyacrylamide gels with apparent molecular weights of 68 kd and 54 kd respectively. Residual nuclear matrix DNA which is not accessible to DNase I on the nuclear level becomes accessible to radiolabelling by nick-translation on the nuclear matrix level. In this case the in situ radiolabelled complexes migrate on SDS-polyacrylamide gels with apparent molecular weights of 68 kd and 100 kd. The DNA/polypeptide complexes are stable during treatments with SDS, beta-mercapto ethanol and alkali which points to covalent bonds between the polypeptides and DNA strands.  相似文献   

14.
In situ forming hydrogels based on thermosensitive polymers have attractive properties for tissue engineering. However, the physical interactions in these hydrogels are not strong enough to yield gels with sufficient stability for many of the proposed applications. In this study, additional covalent cross-links were introduced by photopolymerization to improve the mechanical properties and the stability of thermosensitive hydrogels. Methacrylate groups were coupled to the side chains of triblock copolymers (ABA) with thermosensitive poly( N-(2-hydroxypropyl) methacrylamide lactate) A blocks and a hydrophilic poly(ethylene glycol) B block. These polymers exhibit lower critical solution temperature (LCST) behavior in aqueous solution and the cloud point decreased with increasing amounts of methacrylate groups. These methacrylate groups were photopolymerized above the LCST to render covalent cross-links within the hydrophobic domains. The mechanical properties of photopolymerized hydrogels were substantially improved and their stability was prolonged significantly compared to nonphotopolymerized hydrogels. Whereas non-UV-cured gels disintegrated within 2 days at physiological pH and temperature, the photopolymerized gels degraded in 10 to 25 days depending on the degree of cross-linking. To assess biocompatibility, goat mesenchymal stem cells were seeded on the hydrogel surface or encapsulated within the gel and they remained viable as demonstrated by a LIVE/DEAD cell viability/cytotoxicity assay. Expression of alkaline phosphatase and production of collagen I demonstrated the functionality of the mesenchymal stem cells and their ability to differentiate upon encapsulation. Due to the improved mechanical properties, stability, and adequate cytocompatibility, the photopolymerized thermosensitive hydrogels can be regarded as highly potential materials for applications in tissue engineering.  相似文献   

15.
Biological catalysis frequently causes changes in noncovalent bonding. By building on Pauling's assertion that any long-lived, chemically distinct interaction is a chemical bond, this article redefines enzyme catalysis as the facilitated making and/or breaking of chemical bonds, not just of covalent bonds. It is also argued that nearly every ATPase or GTPase is misnamed as a hydrolase and actually belongs to a distinct class of enzymes, termed here 'energases'. By transducing covalent bond energy into mechanical work, energases mediate such fundamental processes as protein folding, self-assembly, G-protein interactions, DNA replication, chromatin remodeling and even active transport.  相似文献   

16.
Molecular and biochemical aspects of nematode collagens.   总被引:3,自引:0,他引:3  
Collagens are major structural proteins of nematode cuticles and basement membranes (basal laminae). The collagen proteins that form these structures differ in their biochemical and physical properties and are encoded by distinct gene families. Nematode basement membrane collagens are large proteins that show strong homology to basement membrane collagens of vertebrates. There appear to be 2 nonidentical basement membrane collagen genes in nematodes. Cuticle collagens are about one-sixth the size of basement membrane collagens and are encoded by a large family of 20-150 nonidentical genes. Cuticle collagens can be subdivided into 4 families based upon certain structural features in the proteins. The mature, extracellular forms of both types of collagen proteins are extensively cross-linked by disulfide bonds and are largely insoluble in the absence of a thiol-reducing agent. Cuticle collagens also are cross-linked by nonreducible covalent bonds that involve tyrosine residues. The experimental studies that have led to our current understanding of the structures of basement membrane and cuticle collagens are reviewed. Some previous questions about the physical properties of these proteins are reexamined in light of the primary sequence information now available for the proteins.  相似文献   

17.
Glycoprotein of the wall of sycamore tissue-culture cells   总被引:10,自引:8,他引:2       下载免费PDF全文
1. A glycoprotein containing a large amount of hydroxyproline is present in the cell walls of sycamore callus cells. This protein is insoluble and remained in the alpha-cellulose when a mild separation procedure was used to obtain the polysaccharide fractions of the wall. The glycoprotein contained a high proportion of arabinose and galactose. 2. Soluble glycopeptides were prepared from the alpha-cellulose fraction when peptide bonds were broken by hydrazinolysis. The soluble material was fractionated by gel filtration and one glycopeptide was further purified by electrophoresis; it had a composition of 10% hydroxyproline, 35% arabinose and 55% galactose, and each hydroxyproline residue carried a glycosyl radical so that the oligosaccharides on the glycopeptide had an average degree of polymerization of 9. 3. The extraction of the glycopeptides was achieved without cleavage of glycosyl bonds, so that the glycoprotein cannot act as a covalent cross-link between the major polysaccharides of the wall. 4. The wall protein approximates in conformation to polyhydroxyproline and therefore it probably has similar physicochemical properties to polyhydroxyproline. This is discussed in relation to the function of the glycoprotein and its effect on the physical and chemical nature of the wall.  相似文献   

18.
The cellulose hybrids with polyhedral oligomeric silsesquioxane (POSS) are synthesized by cross-linking graft reaction. Dimethylol dihydroxy ethylene urea (DDEU) as cross-linking agent is used in the graft reaction. The chemical and surface morphological structures of the am-POSS grafted cellulose hybrids are characterized with micro-FT-IR spectra, silicon element analysis, X-ray diffraction, SEM, AFM, and DSC. The results show that the am-POSS grafted cellulose hybrids form new macromolecular structures containing POSS nano-silica particles. POSS particles are evenly dispersed at the nanometer scale in the cellulose host matrix, bonding to the cellulose through covalent bonds. The thermal properties of the am-POSS grafted cellulose hybrids are improved.  相似文献   

19.
The objective of this work was to create an in situ physically and chemically cross-linking hydrogel for in vivo applications. N-Isopropylacrylamide (NIPAAm) was copolymerized with N-acryloxysuccinimide (NASI) via free radical polymerization. Poly(NIPAAm-co-NASI) was further modified to obtain poly(NIPAAm-co-cysteamine) through a nucleophilic attack on the carbonyl group of the NASI by the amine group of the cysteamine. Modification was verified by nuclear magnetic resonance. In addition to thermoresponsive physical gelling due to the presence of NIPAAm, this system also chemically gels via a Michael-type addition reaction when mixed with poly(ethylene glycol) diacrylate. The presence of both physical and chemical gelation resulted in material properties that are much improved compared to purely physical gels. The chemical gelation time of the copolymers was not significantly affected by the amount of thiol present due to the increased pKa of the copolymer containing more thiols. In addition, the swelling of the copolymers was highly dependent on the temperature and thiol content. Last, the rate of nucleophilic attack in the Michael-type addition reaction was shown to be highly dependent on pH and on the mole ratio of thiol to acrylate. Due to the improved mechanical properties, this material may be better suited for long-term functional replacement applications than other thermosensitive physical gels. With further development and biocompatibility testing, this material could potentially be applied as a temperature-responsive injectable biomaterial for functional embolization.  相似文献   

20.
Swelling pressure measurements were performed on degrading dextran hydroxyethyl methacrylate (dex-HEMA) hydrogels. In these networks, the cross-links are hydrolyzable carbonate ester bonds formed between methacrylate groups and dextran molecules. It is demonstrated that dex-HEMA gels made in the presence of a known amount of free dextran chains exhibit osmotic properties similar to those of partially degraded dex-HEMA gels. The swelling pressure, Pi(sw), of degrading dex-HEMA gels is controlled primarily by the cross-linked dex-HEMA polymer and the free dextran molecules, while the contribution of short poly-HEMA fragments (produced in the degradation process) is negligible. It is found that Pi(sw) only slightly changes during the first 15 days of degradation. Close to the end of the degradation process, however, a much faster increase in Pi(sw) is observed. The swelling pressure profile of these gels strongly depends on the concentration of the cross-linked dex-HEMA and its chemical composition (amount of HEMA groups per 100 glucose units).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号