首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Notch signaling pathway plays an important role in development and physiology. In Drosophila, Notch is activated by its Delta or Serrate ligands, depending in part on the sugar modifications present in its extracellular domain. O-fucosyltransferase-1 (OFUT1) performs the first glycosylation step in this process, O-fucosylating various EGF repeats at the Notch extracellular domain. Besides its O-fucosyltransferase activity, OFUT1 also behaves as a chaperone during Notch synthesis and is able to down regulate Notch by enhancing its endocytosis and degradation. We have reevaluated the roles that O-fucosylation and the synthesis of GDP-fucose play in the regulation of Notch protein stability. Using mutants and the UAS/Gal4 system, we modified in developing tissues the amount of GDP-mannose-deshydratase (GMD), the first enzyme in the synthesis of GDP-fucose. Our results show that GMD activity, and likely the levels of GDP-fucose and O-fucosylation, are essential to stabilize the Notch protein. Notch degradation observed under low GMD expression is absolutely dependent on OFUT1 and this is also observed in Notch Abruptex mutants, which have mutations in some potential O-fucosylated EGF domains. We propose that the GDP-fucose/OFUT1 balance determines the ability of OFUT1 to endocytose and degrade Notch in a manner that is independent of the residues affected by Abruptex mutations in Notch EGF domains.  相似文献   

3.
The mutant form of the intracellular asymmetrically localized Numb membrane-bound protein of Drosophila melanogaster suppresses the negative complementation of certain Abruptex (Ax) mutations of the Notch (N) locus encoding a transmembrane receptor protein in which the Ax mutations are mutations in the epidermal growth factor (EGF)-like repeats of the extracellular domain of the receptor. One model for how Ax mutants affect N function is that they are refractory to an antagonistic signal generated by an excess of N ligands. Genetically numb (nb) is an antagonist of N. In the absence of nb, cells follow the same fate as they would in the presence of a gain-of-function N allele, such as Ax. Numb has been shown to interact with the cytoplasmic domain of Notch. It is therefore suggested that numb counteracts the effect of Abruptex on Notch ligand binding, i.e. that Numb is an antagonist to the activation of the Notch signal generated by Notch ligands. Numb might accomplish this by interfering with the proteolytic cleavage of the Notch intracellular domain at the cell membrane. Thus, it seems possible that the mechanism of negative complementation of certain Ax mutants is the failure of this cleavage. Other possible mechanisms for negative complementation are also discussed.  相似文献   

4.
The spe-9 gene is required for fertility in Caenorhabditis elegans and encodes a sperm transmembrane protein with an extracellular domain (ECD) that contains 10 epidermal growth factor (EGF) repeats. Deletion analysis reveals that the EGF repeats and the transmembrane domain are required for fertilization. In contrast, the cytoplasmic region of SPE-9 is not essential for fertilization. Individual point mutations in all 10 EGF motifs uncover a differential sensitivity of these sequences to alteration. Some EGF repeats cannot tolerate mutation leading to a complete lack of fertility. Other EGF repeats can be mutated to create animals with temperature-sensitive (ts) fertility phenotypes. All ts mutations were generated by changing either conserved cysteine or glycine residues in the EGF motifs. For two endogenous ts alleles of spe-9, loss of function at nonpermissive temperatures is not due to protein mislocalization or degradation. Additionally, the proper localization of SPE-9 in sperm is not altered in a genetically interacting fertility mutant (spe-13) or a mutant that affects sperm vesicle-plasma membrane fusion (fer-1). Like the EGF repeats in the Notch/LIN-12/GLP-1 receptors and their ligands, the EGF repeats in SPE-9 may carry out different functions. Because EGF motifs are found in many proteins in different species, similar experimental strategies could be used to generate useful temperature-sensitive mutations in other EGF motif-containing molecules.  相似文献   

5.
Notch is a single-pass transmembrane receptor protein which is composed of a short extracellular region, a single-pass transmembrane domain and a small intracellular region. Notch ligand like Delta, member of the DSL protein family, is also single-pass transmembrane protein. It has been demonstrated that of the 36 EGF repeats of Notch, 11th and 12th are sufficient to mediate interactions with Delta. Crystal structure of mammalian Notch extracellular ligand binding domain contains 11 and 12 EGF-like repeats. Here a portion of the Delta protein of Drosophila, known to interact with Notch extracellular domain (ECD) has been modeled using homology modeling. The structure of the Delta-Notch complex was subsequently modeled by protein docking method using GRAMM. MD simulations of the modeled structures were performed. The structure for Delta-Notch complex has been proposed based on interaction energy parameter and planarity studies.  相似文献   

6.
The Abruptex class of Notch alleles has attracted interest because they exhibit some properties that are best explained in terms of increased activity and others that are best explained in terms of reduced activity in vivo. Here, we report a comparison of the properties of Abruptex[M1] and wild-type Notch as ligand binding receptors. Abruptex[M1] showed less activity than wild-type Notch in its ability to bind Delta and Serrate and was expressed at reduced levels on the cell surface. When differences in expression level were taken into account, Abruptex[M1] was comparable to Notch in its sensitivity to ligand-induced activation of reporter gene expression. Abruptex[M1] was also comparable to Notch in its requirement for modification by Fringe and in being sensitive to cis-dowregulation by co-expressed ligands. By the available criteria Abruptex[M1] exhibits less activity than Notch. To explain the ectopic activity of Abruptex[M1] in vivo we suggest that it may be necessary to invoke an altered response to an as yet unidentified ligand or cofactor.  相似文献   

7.
8.
Notch is a single-pass transmembrane receptor protein. Delta (member of the DSL protein family), a Notch ligand, is also single-pass transmembrane protein that can interact with Notch to form the Delta-Notch complex. It has been demonstrated that of the 36 Epidermal Growth Factor (EGF) repeats of Notch, 11th and 12th are sufficient to mediate interactions with Delta. Crystal structure of mammalian Notch1 extracellular ligand binding domain shows the presence of 11th and 12th EGF-like repeats. Here a portion of the Drosophila Delta protein, known to interact with Notch extracellular domain, has been modeled using homology modeling. The structure of the Delta-Notch complex was subsequently modeled by protein-docking method using GRAMM. Molecular dynamic simulations of the modeled structures were performed. The probable structures for Delta-Notch complex have been proposed based on interaction energy parameter and planarity studies.  相似文献   

9.
The Notch signaling pathway is involved in a wide variety of highly conserved developmental processes in mammals. Importantly, mutations of the Notch protein and components of its signaling pathway have been implicated in an array of human diseases (T-cell leukemia and other cancers, Multiple Sclerosis, CADASIL, Alagille Syndrome, Spondylocostal Dysostosis). In mammals, Notch becomes activated upon binding of its extracellular domain to ligands (Delta and Jagged/Serrate) that are present on the surface of apposed cells. The extracellular domain of Notch contains up to 36 tandem Epidermal Growth Factor-like (EGF) repeats. Many of these EGF repeats are modified at evolutionarily-conserved consensus sites by an unusual form of O-glycosylation called O-fucose. Work from several groups indicates that O-fucosylation plays an important role in ligand mediated Notch signaling. Recent evidence also suggests that the enzyme responsible for addition of O-fucose to Notch, protein O-fucosyltransferase-1 (POFUT1), may serve a quality control function in the endoplasmic reticulum. Additionally, some of the O-fucose moieties are further elongated by the action of members of the Fringe family of beta-1,3-N-acetylglucosaminyltransferases. The alteration in O-fucose saccharide structure caused by Fringe modulates the response of Notch to its ligands. Thus, glycosylation serves an important role in regulating Notch activity. This review focuses on the role of glycosylation in the normal functioning of the Notch pathway. As well, potential roles for glycosylation in Notch-related human diseases, and possible roles for therapeutic targeting of POFUT1 and Fringe in Notch-related human diseases, are discussed.  相似文献   

10.
Two glycosyltransferases that transfer sugars to EGF domains, OFUT1 and Fringe, regulate Notch signaling. However, sites of O-fucosylation on Notch that influence Notch activation have not been previously identified. Moreover, the influences of OFUT1 and Fringe on Notch activation can be positive or negative, depending on their levels of expression and on whether Delta or Serrate is signaling to Notch. Here, we describe the consequences of eliminating individual, highly conserved sites of O-fucose attachment to Notch. Our results indicate that glycosylation of an EGF domain proposed to be essential for ligand binding, EGF12, is crucial to the inhibition of Serrate-to-Notch signaling by Fringe. Expression of an EGF12 mutant of Notch (N-EGF12f) allows Notch activation by Serrate even in the presence of Fringe. By contrast, elimination of three other highly conserved sites of O-fucosylation does not have detectable effects. Binding assays with a soluble Notch extracellular domain fusion protein and ligand-expressing cells indicate that the NEGF12f mutation can influence Notch activation by preventing Fringe from blocking Notch-Serrate binding. The N-EGF12f mutant can substitute for endogenous Notch during embryonic neurogenesis, but not at the dorsoventral boundary of the wing. Thus, inhibition of Notch-Serrate binding by O-fucosylation of EGF12 might be needed in certain contexts to allow efficient Notch signaling.  相似文献   

11.
The highly conserved Notch-signaling pathway mediates cell-to-cell communication and is pivotal for multiple developmental processes and tissue homeostasis in adult organisms. Notch receptors and their ligands are transmembrane proteins with multiple epidermal-growth-factor-like (EGF) repeats in their extracellular domains. In vitro the EGF repeats of mammalian ligands that are essential for Notch activation have been defined. However, in vivo the significance of the structural integrity of each EGF repeat in the ligand ectodomain for ligand function is still unclear. Here, we analyzed the mouse Notch ligand DLL1. We expressed DLL1 proteins with mutations disrupting disulfide bridges in each individual EGF repeat from single-copy transgenes in the HPRT locus of embryonic stem cells. In Notch transactivation assays all mutations impinged on DLL1 function and affected both NOTCH1 and NOTCH2 receptors similarly. An allelic series in mice that carried the same point mutations in endogenous Dll1, generated using a mini-gene strategy, showed that early developmental processes depending on DLL1-mediated NOTCH activation were differently sensitive to mutation of individual EGF repeats in DLL1. Notably, some mutations affected only somite patterning and resulted in vertebral column defects resembling spondylocostal dysostosis. In conclusion, the structural integrity of each individual EGF repeat in the extracellular domain of DLL1 is necessary for full DLL1 activity, and certain mutations in Dll1 might contribute to spondylocostal dysostosis in humans.  相似文献   

12.
 The Drosophila gene Serrate encodes a transmembrane protein with 14 epidermal growth factor-(EGF)-like repeats in its extracellular portion. It has been suggested to act as a signal in the developing wing from the dorsal side to induce the organising centre at the dorsal/ventral compartment boundary, which is required for growth and patterning of the wing. Ectopic expression of Serrate during wing development induces ectopic outgrowth of ventral wing tissue and the formation of an additional wing margin. Here we present data to suggest that both events are mediated by genes that are required for normal wing development, including Notch as receptor. In order for Serrate to elicit these responses the concomitant expression of wingless seems to be required. The lack of wings in flies devoid of Serrate function can be partially restored by Gal4-mediated expression of Serrate, whilst expression of wingless is not sufficient. Ectopic expression of Delta, which encodes a structurally very similar transmembrane protein with EGF-like repeats, provokes wing outgrowth and induction of a new margin under all conditions tested here, both on the dorsal and ventral side. Our data further suggest that Serrate can act as an activating ligand for the Notch receptor only under certain circumstances; it inhibits Notch function under other conditions. Received: 26 april 1996 / Accepted: 24 May 1996  相似文献   

13.
The extracellular domain of mouse Notch1 contains 36 tandem epidermal growth factor-like (EGF) repeats, many of which are modified with O-fucose. Previous work from several laboratories has indicated that O-fucosylation plays an important role in ligand mediated Notch activation. Nonetheless, it is not clear whether all, or a subset, of the EGF repeats need to be O-fucosylated. Three O-fucose sites are invariantly conserved in all Notch homologues with 36 EGF repeats (within EGF repeats 12, 26, and 27). To investigate which O-fucose sites on Notch1 are important for ligand-mediated signaling, we mutated the three invariant O-fucose sites in mouse Notch1, along with several less highly conserved sites, and evaluated their ability to transduce Jagged1- and Delta1-mediated signaling in a cell-based assay. Our analysis revealed that mutation of any of the three invariant O-fucose sites resulted in significant changes in both Delta1 and Jagged1 mediated signaling, but mutations in less highly conserved sites had no detectable effect. Interestingly, mutation of each invariant site gave a distinct effect on Notch function. Mutation of the O-fucose site in EGF repeat 12 resulted in loss of Delta1 and Jagged1 signaling, while mutation of the O-fucose site in EGF repeat 26 resulted in hyperactivation of both Delta1 and Jagged1 signaling. Mutation of the O-fucose site in EGF repeat 27 resulted in faulty trafficking of the Notch receptor to the cell surface and a decreased S1 processing of the receptor. These results indicate that the most highly conserved O-fucose sites in Notch1 are important for both processing and ligand-mediated signaling in the context of a cell-based signaling assay.  相似文献   

14.
15.

Background  

Notch signaling drives developmental processes in all metazoans. The receptor binding region of the human Notch ligand Jagged-1 is made of a DSL (Delta/Serrate/Lag-2) domain and two atypical epidermal growth factor (EGF) repeats encoded by two exons, exon 5 and 6, which are out of phase with respect to the EGF domain boundaries.  相似文献   

16.
17.
The Notch family of signaling receptors plays key roles in determining cell fate and growth control. Recently, a number of laboratories have shown that O-fucose glycans on the epidermal growth factor (EGF)-like repeats of the Notch extracellular domain modulate Notch signaling. Fringe, a known modifier of Notch function, is an O-fucose specific beta1,3-N-acetylglucosaminyltransferase. The transfer of GlcNAc to O-fucose on Notch by fringe results in the potentiation of signaling by the Delta class of Notch ligands, but causes inhibition of signaling by the Serrate/Jagged class of Notch ligands. Interestingly, addition of a beta1,4 galactose by beta4GalT-1 to the GlcNAc added by fringe is required for Jagged1-induced Notch signaling to be inhibited in a co-culture assay. Thus, both fringe and beta4GalT-1 are modulators of Notch function. Several models have been proposed to explain how alterations in O-fucose glycans result in changes in Notch signaling, and these models are discussed.  相似文献   

18.
Three mammalian fringe proteins are implicated in controlling Notch activation by Delta/Serrate/Lag2 ligands during tissue boundary formation. It was proved recently that they are glycosyltransferases that initiate elongation of O-linked fucose residues attached to epidermal growth factor-like sequence repeats in the extracellular domain of Notch molecules. Here we demonstrate the existence of functional diversity among the mammalian fringe proteins. Although both manic fringe (mFng) and lunatic fringe (lFng) decreased the binding of Jagged1 to Notch2 and not that of Delta1, the decrease by mFng was greater in degree than that by lFng. We also found that both fringe proteins reduced Jagged1-triggered Notch2 signaling, whereas neither affected Delta1-triggered Notch2 signaling. However, the decrease in Jagged1-triggered Notch2 signaling by mFng was again greater than that by lFng. Furthermore, we observed that each fringe protein acted on a different site of the extracellular region of Notch2. Taking these findings together, we propose that the difference in modulatory function of multiple fringe proteins may result from the distinct amino acid sequence specificity targeted by these glycosyltransferases.  相似文献   

19.
The interaction of three neurogenic loci viz. Delta, Enhancer of split and Notch, and a related gene, Hairless, of Drosophila melanogaster was investigated at the adult morphology level by measuring the effects of the mutations of the three other genes on the expression of the recessive lethal antimorphic Abruptex mutations of the Notch locus. The Abruptex mutations were also coupled in cis or trans with facet-glossy or split mutations of the Notch locus. In some of the experiments, the genotype of the fly was homozygous for either facet-glossy or split mutation or their wild type alleles but heterozygous for the Abruptex. Facet-glossy is located in a large intron of the locus, whereas split is located in the same exon as Abruptex. In all compounds studied, Delta suppressed the expression of Abruptex while Hairless and Enhancer of split enhanced it. The interactions of the four genes studied were allele specific, suggesting an interaction at the protein level. The comparison of the results presented in this study on the interaction of the neurogenic genes with other results on the same subject suggests that the interactions are similar in embryonic and imaginal development.  相似文献   

20.
The delta and Serrate proteins interact with the extracellular domain of the Notch receptor and initiate signalling through the receptor. The two ligands are very similar in structure and have been shown to be interchangeable experimentally; however, loss of function analysis indicates that they have different functions during development and analysis of their signalling during wing development indicates that the Fringe protein can discriminate between the two ligands. This raises the possibility that the signalling of delta and Serrate through Notch requires different domains of the Notch protein. Here we have tested this possibility by examining the ability of delta and Serrate to interact and signal with Notch molecules in which different domains had been deleted. This analysis has shown that EGF-like repeats 11 and 12, the RAM-23 and cdc10/ankyrin repeats and the region C-terminal to the cdc10/ankyrin repeats of Notch are necessary for both delta and Serrate to signal via Notch. They also indicate, however, that delta and Serrate utilise EGF-like repeats 24-26 of Notch for signalling, but there are significant differences in the way they utilise these repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号