共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Planar cell polarity in the Drosophila eye is directed by graded Four-jointed and Dachsous expression 总被引:4,自引:0,他引:4
Simon MA 《Development (Cambridge, England)》2004,131(24):6175-6184
Planar cell polarity (PCP) occurs when the cells of an epithelium are polarized along a common axis lying in the epithelial plane. During the development of PCP, cells respond to long-range directional signals that specify the axis of polarization. In previous work on the Drosophila eye, we proposed that a crucial step in this process is the establishment of graded expression of the cadherin Dachsous (Ds) and the Golgi-associated protein Four-jointed (Fj). These gradients were proposed to specify the direction of polarization by producing an activity gradient of the cadherin Fat within each ommatidium. In this report, I test and confirm the key predictions of this model by altering the patterns of Fj, Ds and Fat expression. It is shown that the gradients of Fj and Ds expression provide partially redundant positional information essential for specifying the polarization axis. I further demonstrate that reversing the Fj and Ds gradients can lead to reversal of the axis of polarization. Finally, it is shown that an ectopic gradient of Fat expression can re-orient PCP in the eye. In contrast to the eye, the endogenous gradients of Fj and Ds expression do not play a major role in directing PCP in the wing. Thus, this study reveals that the two tissues use different strategies to orient their PCP. 相似文献
4.
Interactions between Fat and Dachsous and the regulation of planar cell polarity in the Drosophila wing 总被引:4,自引:0,他引:4
It was recently suggested that a proximal to distal gradient of the protocadherin Dachsous (Ds) acts as a cue for planar cell polarity (PCP) in the Drosophila wing, orienting cell-cell interactions by inhibiting the activity of the protocadherin Fat (Ft). This Ft-Ds signaling model is based on mutant loss-of-function phenotypes, leaving open the question of whether Ds is instructive or permissive for PCP. We developed tools for misexpressing ds and ft in vitro and in vivo, and have used these to test aspects of the model. First, this model predicts that Ds and Ft can bind. We show that Ft and Ds mediate preferentially heterophilic cell adhesion in vitro, and that each stabilizes the other on the cell surface. Second, the model predicts that artificial gradients of Ds are sufficient to reorient PCP in the wing; our data confirms this prediction. Finally, loss-of-function phenotypes suggest that the gradient of ds expression is necessary for correct PCP throughout the wing. Surprisingly, this is not the case. Uniform levels of ds drive normally oriented PCP and, in all but the most proximal regions of the wing, uniform ds rescues the ds mutant PCP phenotype. Nor are distal PCP defects increased by the loss of spatial information from the distally expressed four-jointed (fj) gene, which encodes putative modulator of Ft-Ds signaling. Thus, while our results support the existence of Ft-Ds binding and show that it is sufficient to alter PCP, ds expression is permissive or redundant with other PCP cues in much of the wing. 相似文献
5.
The regular array of distally pointing hairs on the mature Drosophila wing is evidence for the fine control of Planar Cell Polarity (PCP) during wing development. Normal wing PCP requires both the Frizzled (Fz) PCP pathway and the Fat/Dachsous (Ft/Ds) pathway, although the functional relationship between these pathways remains under debate. There is strong evidence that the Fz PCP pathway signals twice during wing development, and we have previously presented a Bidirectional-Biphasic Fz PCP signaling model which proposes that the Early and Late Fz PCP signals are in different directions and employ different isoforms of the Prickle protein. The goal of this study was to investigate the role of the Ft/Ds pathway in the context of our Fz PCP signaling model. Our results allow us to draw the following conclusions: (1) The Early Fz PCP signals are in opposing directions in the anterior and posterior wing and converge precisely at the site of the L3 wing vein. (2) Increased or decreased expression of Ft/Ds pathway genes can alter the direction of the Early Fz PCP signal without affecting the Late Fz PCP signal. (3) Lowfat, a Ft/Ds pathway regulator, is required for the normal orientation of the Early Fz PCP signal but not the Late Fz PCP signal. (4) At the time of the Early Fz PCP signal there are symmetric gradients of dachsous (ds) expression centered on the L3 wing vein, suggesting Ds activity gradients may orient the Fz signal. (5) Localized knockdown or over-expression of Ft/Ds pathway genes shows that boundaries/gradients of Ft/Ds pathway gene expression can redirect the Early Fz PCP signal specifically. (6) Altering the timing of ds knockdown during wing development can separate the role of the Ft/Ds pathway in wing morphogenesis from its role in Early Fz PCP signaling. 相似文献
6.
Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity 总被引:5,自引:0,他引:5
Planar polarity is a fundamental property of epithelia in animals and plants. In Drosophila it depends on at least two sets of genes: one set, the Ds system, encodes the cadherins Dachsous (Ds) and Fat (Ft), as well as the Golgi protein Four-jointed. The other set, the Stan system, encodes Starry night (Stan or Flamingo) and Frizzled. The prevailing view is that the Ds system acts via the Stan system to orient cells. However, using the Drosophila abdomen, we find instead that the two systems operate independently: each confers and propagates polarity, and can do so in the absence of the other. We ask how the Ds system acts; we find that either Ds or Ft is required in cells that send information and we show that both Ds and Ft are required in the responding cells. We consider how polarity may be propagated by Ds-Ft heterodimers acting as bridges between cells. 相似文献
7.
The localization of the planar cell polarity proteins Vang12, frizzled-3, Vang11, and Celsr1 in the rat incisors was examined using immunocytochemistry. The results showed that Vang12 was localized at two regions of the Tomes' processes of inner enamel-secretory ameloblasts in rat incisors: a proximal and a distal region. In contrast, frizzled-3 was localized at adherens junctions of the proximal and distal areas of inner enamel- and outer enamel-secretory ameloblasts, where N-cadherin and β-catenin were localized. frizzled-3 was also localized in differentiating inner enamel epithelial cells. Vang11 was localized sparsely in differentiating preameloblasts and extensively at the cell boundary of stratum intermedium. Celsr1 was not localized in ameloblasts but localized in odontoblasts extensively. These results suggest the involvement of planar cell polarity proteins in odontogenesis. 相似文献
8.
In the last few years, evidence has come to light suggesting that planar cell polarity signaling in vertebrates may be controlled and modulated by primary cilia, subcellular organelles that emerge from the plasma membrane of most cell types. This characteristic distinguishes vertebrate planar cell polarity signaling from that in insects. We review here some of the experimental evidence contributing to this finding. These observations have begun to suggest molecular and cellular mechanisms of the so-called ciliopathies, important human diseases characterized by defective ciliary functions. 相似文献
9.
Separating the adhesive and signaling functions of the Fat and Dachsous protocadherins 总被引:4,自引:0,他引:4
The protocadherins Fat (Ft) and Dachsous (Ds) are required for several processes in the development of Drosophila, including controlling growth of imaginal discs, planar cell polarity (PCP) and the proximodistal patterning of appendages. Ft and Ds bind in a preferentially heterophilic fashion, and Ds is expressed in distinct patterns along the axes of polarity. It has thus been suggested that Ft and Ds serve not as adhesion molecules, but as receptor and ligand in a poorly understood signaling pathway. To test this hypothesis, we performed a structure-function analysis of Ft and Ds, separating their adhesive and signaling functions. We found that the extracellular domain of Ft is not required for its activity in growth, PCP and proximodistal patterning. Thus, ligand binding is not necessary for Ft activity. By contrast, the extracellular domain of Ds is necessary and sufficient to mediate its effects on PCP, consistent with the model that Ds acts as a ligand during PCP. However, we also provide evidence that Ds can regulate growth independently of Ft, and that the intracellular domain of Ds can affect proximodistal patterning, both suggestive of functions independent of binding Ft. Finally, we show that ft mutants or a dominant-negative Ft construct can affect disc growth without changes in the expression of wingless and Wingless target genes. 相似文献
10.
Planar polarity and tissue morphogenesis 总被引:3,自引:0,他引:3
Planar polarity is a global, tissue-level phenomenon that coordinates cell behavior in a two-dimensional plane. The Frizzled/planar cell polarity (PCP) and anterior-posterior (AP) patterning systems for planar polarity operate in a variety of cell types and provide direction to cells with different morphologies and behaviors. These two systems involve different sets of proteins but both use directional cues provided locally by communication between neighboring cells. This review describes our current understanding of the mechanisms that transmit directional signals from cell to cell and compares the strategies for generating global systems of spatial information in stationary and dynamic cell populations. 相似文献
11.
Ependymal cells, epithelial cells that line the cerebral ventricles of the adult brain in various animals, extend multiple motile cilia from their apical surface into the ventricles. These cilia move rapidly, beating in a direction determined by the ependymal planar cell polarity (PCP). Ciliary dysfunction interferes with cerebrospinal fluid circulation and alters neuronal migration. In this review, we summarize recent studies on the cellular and molecular mechanisms underlying two distinct types of ependymal PCP. Ciliary beating in the direction of fluid flow is established by a combination of hydrodynamic forces and intracellular planar polarity signaling. The ciliary basal bodies' anterior position on the apical surface of the cell is determined in the embryonic radial glial cells, inherited by ependymal cells, and established by non-muscle myosin II in early postnatal development. 相似文献
12.
《Fly》2013,7(4):316-321
Planar cell polarity (PCP) describes the orientation of a cell within the plane of an epithelial cell layer. During tissue development, epithelial cells normally align their PCP so that they face in the same direction. This alignment allows cells to move in a common direction, or to generate structures with a common orientation. A classic system for studying the coordination of epithelial PCP is the developing Drosophila wing. The alignment of epithelial PCP during pupal wing development allows the production of an array of cell hairs that point towards the wing tip. Multiple studies have established that the Frizzled (Fz) PCP signaling pathway coordinates wing PCP. Recently, we have found that the same pathway also controls the formation of ridges on the Drosophila wing membrane. However, in contrast to hair polarity, ridge orientation differs between the anterior and posterior wing. How can the Fz PCP pathway generate a different relationship between hair and ridge orientation in different parts of the wing? In this Extra View article, we discuss membrane ridge development drawing upon our recent PLoS Genetics paper and other, published and unpublished, data. We also speculate upon how our findings impact the ongoing debate concerning the interaction of the Fz PCP and Fat/Dachsous pathways in the control of PCP. 相似文献
13.
14.
15.
16.
Takashi Ishiuchi Kazuyo Misaki Shigenobu Yonemura Masatoshi Takeichi Takuji Tanoue 《The Journal of cell biology》2009,185(6):959-967
Compartmentalization of the plasma membrane in a cell is fundamental for its proper functions. In this study, we present evidence that mammalian Fat4 and Dachsous1 cadherins regulate the apical plasma membrane organization in the embryonic cerebral cortex. In neural progenitor cells of the cortex, Fat4 and Dachsous1 were concentrated together in a cell–cell contact area positioned more apically than the adherens junction (AJ). These molecules interacted in a heterophilic fashion, affecting their respective protein levels. We further found that Fat4 associated and colocalized with the Pals1 complex. Ultrastructurally, the apical junctions of the progenitor cells comprised the AJ and a stretch of plasma membrane apposition extending apically from the AJ, which positionally corresponded to the Fat4–Dachsous1-positive zone. Depletion of Fat4 or Pals1 abolished this membrane apposition. These results highlight the importance of the Fat4–Dachsous1–Pals1 complex in organizing the apical membrane architecture of neural progenitor cells. 相似文献
17.
Planar cell polarity is a common and probably universal feature of epithelial cells throughout their life. It is not only visible in the external parts of adult animals and plants, but also present in newborn cells such as in the primary Drosophila epithelium. It controls not only cell shape and differentiation, but also cell motility, cell shape changes and it directs how animals are shaped. In this review, we report how planar cell polarity arises in Drosophila embryos and thereby illustrate how general and extensive planar polarity is during development, from the very beginning to the end. We present the main features of planar cell polarization in Drosophila embryos, in particular the fact that it occurs over a short range of just a few cell diameters, and within a very short time window. We contrast these with other systems, such as the adult Drosophila wing where planar cell polarity occurs at longer range. 相似文献
18.
19.
《Organogenesis》2013,9(3):180-190
Planar cell polarity (PCP) describes the coordinated polarization of tissue cells in a direction that is orthogonal to their apical/basal axis. In the last several years, studies in flies and vertebrates have defined evolutionarily conserved pathways that establish and maintain PCP in various cellular contexts. Defective responses to the polarizing signal(s) have deleterious effects on the development and repair of a wide variety of organs/tissues. In this review, we cover the known and hypothesized roles for PCP in the metanephric kidney. We highlight the similarities and differences in PCP establishment in this organ compared with flies, especially the role of Wnt signaling in this process. Finally, we present a model whereby the signal(s) that organizes PCP in the kidney epithelium, at least in part, comes from the adjacent stromal fibroblasts. 相似文献
20.
In many species, intracellular mRNA localization is linked to cell polarity. In many cases however, mRNAs become localized as a result of a pre-existing cell-polarity, and they do not modify it. Remarkably, in the case beta actin mRNA in vertebrate, it has been shown that the transport and localization of this RNA is required for the establishment and maintenance of cell polarity. This occurs in fibroblasts, but, very interestingly, in immature neurons as well. This review will describe the functions and mechanisms of actin mRNA localization. 相似文献