首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five strains of Aspergillus flavus lacking the ability to produce aflatoxins were examined in greenhouse tests for the ability to prevent a toxigenic strain from contaminating developing cottonseed with aflatoxins. All atoxigenic strains reduced contamination when inoculated into developing bolls 24 h prior to the toxigenic strain. However, only one strain, AF36, was highly effective when inoculated simultaneously with the toxigenic strain. All five strains were able to inhibit aflatoxin production by the toxigenic strain in liquid fermentation. Thus, in vitro activity did not predict the ability of an atoxigenic strain to prevent contamination of developing bolls. Therefore, strain selection for competitive exclusion to prevent aflatoxin contamination should include evaluation of efficacy in developing crops prior to field release. Atoxigenic strains were also characterized by the ability to convert several aflatoxin precursors into aflatoxin B1. Four atoxigenic strains failed to convert any of the aflatoxin biosynthetic precursors to aflatoxins. However, the strain (AF36) most effective in preventing aflatoxin contamination in developing bolls converted all tested precursors into aflatoxin B1, indicating that this strain made enzymes in the aflatoxin biosynthetic pathway.  相似文献   

2.
Biological control of aflatoxin contamination by Aspergillus flavus is achieved through competitive exclusion of aflatoxin producers by atoxigenic strains. Factors dictating the extent to which competitive displacement occurs during host infection are unknown. The role of initial host contact in competition between pairs of A. flavus isolates coinfecting maize kernels was examined. Isolate success during tissue invasion and reproduction was assessed by quantification of isolate-specific single nucleotide polymorphisms using pyrosequencing. Isolates were inoculated either simultaneously or 1 h apart. Increased success during competition was conferred to the first isolate to contact the host independent of that isolate's innate competitive ability. The first-isolate advantage decreased with the conidial concentration, suggesting capture of limited resources on kernel surfaces contributes to competitive exclusion. Attempts to modify access to putative attachment sites by either coating kernels with dead conidia or washing kernels with solvents did not influence the success of the first isolate, suggesting competition for limited attachment sites on kernel surfaces does not mediate first-isolate advantage. The current study is the first to demonstrate an immediate competitive advantage conferred to A. flavus isolates upon host contact and prior to either germ tube emergence or host colonization. This suggests the timing of host contact is as important to competition during disease cycles as innate competitive ability. Early dispersal to susceptible crop components may allow maintenance within A. flavus populations of genetic types with low competitive ability during host tissue invasion.  相似文献   

3.
The co-inhabiting mycoflora with Aspergillus flavus observed on individual maize kernels was evaluated for its influence on aflatoxin synthesis. All 13 types of associations of different fungal species inhibited aflatoxin B1 and G1 production at different levels (34·3–100%). Inhibition of radial growth of A. flavus by Fusarium moniliforme (59·8%), Trichoderma viride (72·5%) and Rhizopus nigricans (42%) could be directly correlated to the per cent inhibition of aflatoxin production. High levels of inhibition of aflatoxin elaboration were noted in competition of A. flavus with other toxigenic moulds.  相似文献   

4.
Aspergillus niger, a mold commonly associated with Aspergillus flavus in damaged corn, interferes with the production of aflatoxin when grown with A. flavus on autoclaved corn. The pH of corn-meal disks was adjusted using NaOH-HCl, citric acid-sodium citrate, or a water extract of A. niger fermented corn. Aflatoxin formation was completely inhibited below pH 2.8-3.0, irrespective of the system used for pH adjustment. When grown in association with A. flavus NRRL 6432 on autoclaved corn kernels, A. niger NRRL 6411 lowered substrate pH sufficiently to suppress aflatoxin production. The biodegradation of aflatoxin B1 or its conversion to aflatoxin B2a were eliminated as potential mechanisms by which A. niger reduces aflatoxin contamination. A water extract of corn kernels fermented with A. niger caused an additional inhibition of aflatoxin formation apart from the effects of pH.  相似文献   

5.
Genetic exchange by asexual filamentous fungi is presumed to be limited to isolates in the same vegetative compatibility group (VCG). To evaluate genetic isolation of Aspergillus flavus due to vegetative incompatibility, three gene regions were chosen that contained closely spaced nucleotides that were polymorphic among some of the six VCGs examined. A member of each VCG was collected from five regions across the southern United States. Isolates belonging to the same VCG had similar sets of single nucleotide polymorphisms regardless of isolate origin. The six VCGs formed four genetically distinct groups. Although recombination between certain pairs of VCGs could not be excluded, none was found for YV36, the VCG that includes the atoxigenic A. flavus isolate currently used to mitigate aflatoxin contamination in cotton in Arizona.  相似文献   

6.
The population dynamics of Aspergillus flavus, shaped in part by intraspecific competition, influence the likelihood and severity of crop aflatoxin contamination. Competition for nutrients may be one factor modulating intraspecific interactions, but the influences of specific types and concentrations of nutrients on competition between genotypes of A. flavus have not been investigated. Competition between paired A. flavus isolates on agar media was affected by varying concentrations of carbon (sucrose or asparagine) and nitrogen (nitrate or asparagine). Cocultivated isolate percentages from conidia and agar-embedded mycelia were quantified by measurements of isolate-specific single-nucleotide polymorphisms with quantitative pyrosequencing. Compositions and concentrations of nutrients influenced conidiation resulting from cocultivation, but the percentages of total conidia from each competing isolate were not predicted by sporulation of isolates grown individually. Success during sporulation did not reflect the outcomes of competition during mycelial growth, and the extents to which isolate percentages from conidia and mycelia differed varied among both isolate pairs and media. Whether varying concentrations of sucrose, nitrate, or asparagine increased, decreased, or had no influence on competitive ability was isolate dependent. Different responses of A. flavus isolates to nutrient variability suggest genotypes are adapted to different nutrient environments that have the potential to influence A. flavus population structure and the epidemiology of aflatoxin contamination.  相似文献   

7.
Aims: The objectives of this study were to assess the genetic relationships between toxigenic and atoxigenic isolates of Aspergillus flavus collected from peanut fields in China, and to analyse deletions within the aflatoxin biosynthetic gene cluster for the atoxigenic isolates. Methods and Results: Analysis of random‐amplified polymorphic DNA and microsatellite‐primed PCR data showed that the toxigenic and atoxigenic isolates of A. flavus were not clustered based on their regions and their ability of aflatoxin and sclerotial production. These results were further supported by DNA sequence of ITS, pksA and omtA genes. PCR assays showed that 24 of 35 isolates containing no detectable aflatoxins had the entire aflatoxin gene cluster. Eleven atoxigenic isolates had five different deletion patterns in the cluster. Conclusions: Toxigenic and atoxigenic isolates of A. flavus are genetically similar, but some atoxigenic isolates having deletions within the aflatoxin gene cluster can be identified readily by PCR assays. Significance and Impact of the Study: Because the extensive deletions within the aflatoxin gene cluster are not rare in the atoxigenic isolates, analysis of deletion within the cluster would be an effective method for the rapid screening of atoxigenic isolates for developing biocontrol agents.  相似文献   

8.
An immune response is triggered in host cells when host receptors recognize conserved molecular motifs, pathogen-associated molecular patterns (PAMPs), such as β-glucans, and chitin at the cell surface of a pathogen. Effector-triggered immunity occurs when pathogens deliver effectors into the host cell to suppress the first immune signaling. Using a differential proteomic approach, we identified an array of proteins responding to aflatoxins in cotyledons of peanut (Arachis hypogaea) infected with aflatoxin-producing (toxigenic) but not nonaflatoxin-producing (atoxigenic) strains of Aspergillus flavus. These proteins are involved in immune signaling and PAMP perception, DNA and RNA stabilization, induction of defense, innate immunity, hypersensitive response, biosynthesis of phytoalexins, cell wall responses, peptidoglycan assembly, penetration resistance, condensed tannin synthesis, detoxification, and metabolic regulation. Gene expression analysis confirmed the differential abundance of proteins in peanut cotyledons supplemented with aflatoxins, with or without infection with the atoxigenic strain. Similarly, peanut germination and A. flavus growth were altered in response to aflatoxin B1. These findings show an additional immunity initiated by aflatoxins. With the PAMP- and effector-triggered immune responses, this immunity constitutes the third immune response of the immune system in peanut cotyledon cells. The system is also a three-grade coevolution of plant-pathogen interaction.  相似文献   

9.
10.
The paper explores fungal infection and aflatoxin B(1) contamination of six medicinal plant samples viz. Adhatoda vasica Nees, Asparagus racemosus Linn., Evolvulus alsinoides Linn., Glycyrrhiza glabra Linn., Plumbago zeylanica Linn. and Terminalia chebula Retz. A total of 858 fungal isolates were detected from the raw materials. Maximum number of fungal isolates was detected from A. racemosus (228). The genus Aspergillus was found to be the most dominant genus causing infection to most of the raw materials. Among the 32 isolates of A. flavus tested, 13 isolates were found to be toxigenic elaborating aflatoxin B(1). The highest elaboration of aflatoxin B(1) was 394.95 ppb by the isolates of A. flavus from G. glabra. The essential oil of Cinnamomum camphora (L.) Presl showed efficacy in arresting aflatoxin B(1) by the toxigenic strain. The growth of a toxigenic strain of A. flavus decreased progressively with increasing concentration of essential oil from leaves of C. camphora. The oil completely inhibited aflatoxin B(1) production even at 750 ppm. Hence, the oil of C. camphora is recommended as herbal fungitoxicant against the fungal contamination of the raw materials.  相似文献   

11.
The nor mutant of Aspergillus flavus has a defective norsolorinic acid reductase, and thus the aflatoxin biosynthetic pathway is blocked, resulting in the accumulation of norsolorinic acid, a bright red-orange pigment. We developed a visual agar plate assay to monitor yeast strains for their ability to inhibit aflatoxin production by visually scoring the accumulation of this pigment of the nor mutant. We identified yeast strains that reduced the red-orange pigment accumulation in the nor mutant. These yeasts also reduced aflatoxin accumulation by a toxigenic strain of A. flavus. These yeasts may be useful for reducing aflatoxin contamination of food commodities.  相似文献   

12.
Sharma YP  Sumbali G 《Mycopathologia》1999,148(2):103-107
An investigation was undertaken to obtain data on the occurrence of aflatoxins and the aflatoxin producing potential of Aspergillus flavus strains isolated from dry fruit slices of quinces produced in jammu and Kashmir, India. A total of 147 A. flavus isolates recovered from dr fruit slices were grown in liquid rice flour medium and screened for the production of various aflatoxins by thin layer chromatography. The results showed that 23.14% of the tested isolates were aflatoxigenic, producing aflatoxins B1 and B2 in varying amounts. Aflatoxins G1 and G2 were not detected. All 25 of the investigated market samples were also found to be aflatoxin B1 positive and the level of contamination ranged from 96 to 8164 micrograms/kg of the dry fruit which is quite high in comparison to the permissible level of 30 ppb. As per these results biochemical composition of dry fruit slices of quinces, along with climatic conditions seem to be very favourable for aflatoxin production by the toxigenic A. flavus strains. Therefore, monitoring of aflatoxins in dry fruit slices of quinces is recommended for this region.  相似文献   

13.
Peanuts grown under dryland conditions where drought stress occurred accumulated more aflatoxin before digging than peanuts grown under irrigation. Kernels became more susceptible to Aspergillus flavus and A. parasiticus invasion when the soil moisture in the pod zone approached levels at which moisture moved from the pod into the soil and the kernel moisture dropped below 31%. Isolation frequencies of these aspergilli from fresh-dug kernels were lowest in 1968 (maximum of 3%). In 1967 and 1969, maximum percentages of 100 and 74, respectively, were noted. Kernel infestation was correlated with degree of aflatoxin contamination. Dryland fresh-dug kernels contained a maximum of 35,800 parts per billion aflatoxin while a maximum of 50 parts per billion was detected in kernels from irrigated plots. In 1969 A. flavus infestation was as high as 59% in peanuts from irrigated plots; however, no aflatoxin was detected. Absence of aflatoxin in these samples is attributed to the higher kernel moisture content which reduced the aflatoxin-producing potential of A. flavus. Statistical analysis of the data revealed no significant differences in degree of fungal infestation, production levels, and grade factors between any fungicide treatments.  相似文献   

14.
Maize infected by aflatoxin‐producing Aspergillus flavus may become contaminated with aflatoxins, and as a result, threaten human health, food security and farmers' income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the effectiveness of atoxigenic isolates in mitigating aflatoxin contamination. However, such information has not been used to facilitate selection and deployment of atoxigenic isolates. A total of 35 isolates of A. flavus isolated from maize samples collected from three agro‐ecological zones of Nigeria were used in this study. Ecophysiological characteristics, distribution and genetic diversity of the isolates were determined to identify vegetative compatibility groups (VCGs). The generated data were used to inform selection and deployment of native atoxigenic isolates to mitigate aflatoxin contamination in maize. In co‐inoculation with toxigenic isolates, atoxigenic isolates reduced aflatoxin contamination in grain by > 96%. A total of 25 VCGs were inferred from the collected isolates based on complementation tests involving nitrate non‐utilizing (nit?) mutants. To determine genetic diversity and distribution of VCGs across agro‐ecological zones, 832 nit? mutants from 52 locations in 11 administrative districts were paired with one self‐complementary nitrate auxotroph tester‐pair for each VCG. Atoxigenic VCGs accounted for 81.1% of the 153 positive complementations recorded. Genetic diversity of VCGs was highest in the derived savannah agro‐ecological zone (H = 2.61) compared with the southern Guinea savannah (H = 1.90) and northern Guinea savannah (H = 0.94) zones. Genetic richness (H = 2.60) and evenness (E5 = 0.96) of VCGs were high across all agro‐ecological zones. Ten VCGs (40%) had members restricted to the original location of isolation, whereas 15 VCGs (60%) had members located between the original source of isolation and a distance > 400 km away. The present study identified widely distributed VCGs in Nigeria such as AV0222, AV3279, AV3304 and AV16127, whose atoxigenic members can be deployed for a region‐wide biocontrol of toxigenic isolates to reduce aflatoxin contamination in maize.  相似文献   

15.
The presence of glutathione (GSH) S-transferase activity, using 1-chloro-2, 4-dinitrobenzene (CDNB) as a substrate, has been established in the cytosolic fraction of the toxigenic (aflatoxin producing) and nontoxigenic strains of Aspergillus flavus. Significant differences in the GSH S-transferase activity were observed between the toxigenic and non-toxigenic strains. A positive correlation has been demonstrated for the first time between aflatoxin formation and a biochemical parameter, namely GSH S-transferase activity. The evidence in support of A. flavus GSH S-transferase induction by endogenous aflatoxins is as follows: (i) the age-related production of aflatoxin follows the same pattern as the cytosolic GSH S-transferase activity profile; (ii) significantly higher enzyme activity was associated with mycelia of a toxigenic strain grown in medium supporting high aflatoxin production (sucrose-low-salts medium) while the enzyme activity was low in medium producing less aflatoxin (glucose-ammonium nitrate medium). The GSH S-transferase activity of the non-toxigenic strain was hardly affected by a change in the medium as it produces no aflatoxins; and (iii) the toxigenic strain demonstrated significantly higher apparent Vmax. with no change in Km as compared with the non-toxigenic strain. This indicates that the enzyme induction by endogenous aflatoxins is similar to the action of phenobarbitol and other inducing drugs (Kaplowitz et al., 1975).  相似文献   

16.
Biocontrol of aflatoxin contamination using atoxigenic Aspergillus flavus to competitively exclude aflatoxin-producing strains has previously been reported, and is currently in the third year of commercial-scale tests (treating 50-200 ha per annum). Wheat seed colonized with atoxigenic A. flavus has been used in the commercial trials. Requirements for production of this colonized wheat seed are described and the spore yield of wheat is compared to other substrates. The study suggests that the most cost-effective inoculum production would require colonization of wheat (106 conidia kg -1 of wheat seed) at 25% (w/w) moisture for 18 h at 31 C. To prevent fungal growth and associated wheat aggregation in storage, seed had to be dried below 15% (w/w) moisture, although a moisture content of 35% (w/w) did not reduce viability in sealed containers stored at 18-25 C over an 8-month period. The dry biopesticide had multi-year stability without refrigeration and withstood temperatures of 70 C for 20 min. Sporulation of the product occurred within 3 days at 31 C and 100% relative humidity with yields averaging 4.9 X 109 conidia g -1 by day 7.  相似文献   

17.
Aflatoxin contamination of some common drug plants   总被引:1,自引:0,他引:1  
This paper deals with the natural occurrence of aflatoxins in some common drug plants collected from storehouses in Bihar, India. Of 15 samples analyzed, 14 were aflatoxin positive. The highest level of aflatoxin contamination was detected in the seeds of Piper nigrum (1.20 micrograms/g), followed by the level detected in the seeds of Mucuna prurita (1.16 micrograms/g), and the lowest level was detected in the bark of Acacia catechu (0.09 micrograms/g). Of 158 isolates of Aspergillus flavus obtained from as many samples of drug plants, 49 were found to be toxigenic. The amount of aflatoxin B1 elaborated by the toxigenic isolates was in the range of 0.86 to 5.24 micrograms/ml of culture filtrate.  相似文献   

18.
A procedure was developed to encapsulate mycelia of an atoxigenic strain of Aspergillus flavus in alginate pellets for seeding into agricultural fields in order to reduce aflatoxin contamination via competitive exclusion. Kaolin, a clay filler commonly employed in alginate formulations, was detrimental to pellet performance as measured by spore yield. Corn cob grits, a by-product of the corn industry, was found to be an excellent replacement for kaolin. Of nine nutritive adjuvants tested, wheat gluten improved pellet performance the most, although gluten concentrations above 5% were difficult to process. The best formulation tested consisted of 1% sodium alginate, 5% corn cob grits and 5% wheat gluten. On a 'per gram' basis, this alginate formulation yielded more spores than either A. flavus sclerotia or colonized wheat seed. Pesticides were also tested as adjuvants with potential use for protecting pellets under field conditions. Only one (chloramphenicol) of four tested pesticides (the others were dichloran, rose Bengal and cyfluthrin) reduced pellet sporulation. Formulations with or without pesticide adjuvants retained similar spore yield potential during a 2-year storage at 8 C. However, spore production in stored products lagged behind that of fresh products. At 75% relative humidity (RH), pellet storage stability decreased with increasing temperature from 27 to 42 C. Pellet spore yield at 32 C decreased as RH decreased from 100 to 90%. Sporulation occurred at 90% RH but not at 88% RH. Spore yield varied widely in four field tests, and the cumulative spore yield was inversely correlated (r2= -0.798, P 0.01) with rainfall. The results suggest that alginate pellets may be effective formulations for delivery of atoxigenic A. flavus strains to furrow-irrigated cotton in desert environments, where aflatoxin contamination of cottonseed is most severe.  相似文献   

19.
Aflatoxin contamination of some common drug plants.   总被引:4,自引:0,他引:4       下载免费PDF全文
This paper deals with the natural occurrence of aflatoxins in some common drug plants collected from storehouses in Bihar, India. Of 15 samples analyzed, 14 were aflatoxin positive. The highest level of aflatoxin contamination was detected in the seeds of Piper nigrum (1.20 micrograms/g), followed by the level detected in the seeds of Mucuna prurita (1.16 micrograms/g), and the lowest level was detected in the bark of Acacia catechu (0.09 micrograms/g). Of 158 isolates of Aspergillus flavus obtained from as many samples of drug plants, 49 were found to be toxigenic. The amount of aflatoxin B1 elaborated by the toxigenic isolates was in the range of 0.86 to 5.24 micrograms/ml of culture filtrate.  相似文献   

20.
Aflatoxin production by a toxigenic strain of Aspergillus flavus was greatly reduced by benzoic acid and sodium benzoate in synthetic media. The reduction was accompanied by the appearance of a yellow pigment. Spectral analyses partially characterized this pigment as closely related to an acetyl derivative of a versiconal-type compound. A cell-free extract prepared from A. flavus grown in synthetic media was active in converting this yellow compound into aflatoxin B1 in the presence of reduced nicotinamide adenine dinucleotide phosphate at 25 degrees C (pH 7.4). In the presence of benzoic acid and its salt or autoclaved cell-free extract, conversion of yellow compound to aflatoxin B1 was prevented. These results suggest that the yellow compound is an intermediate in the secondary metabolic cycle involved in aflatoxin B1 production. Benzoic acid, sodium benzoate, or autoclaving the cell-free extract appear to have respectively blocked or denatured an enzymatic step late in the biosynthetic pathway of aflatoxin B1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号