首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silkworm hemolymph (SH), prepared from fifth-instar larvae of Bombyx mori and heat-treated at 60 degrees C for 30 min, was used to improve cell viability and the production of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) in transgenic Oryza sativa L. cell suspension cultures. Even though SH could not elevate cell viability at the concentrations up to 3% (v/v), addition of 0.3% (v/v) SH to a culture medium enhanced the production of hCTLA4Ig by 36.8% over an SH-free medium. Moreover, the production period of hCTLA4Ig could be shortened in a 0.3% (v/v) SHadded medium compared with that in an SH-free culture. As a result, addition of 0.3% (v/v) SH improved the productivity of hCTLA4Ig significantly in transgenic rice cell cultures.  相似文献   

2.
The effects of culture media on the production of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) and intracellular protein expression patterns were investigated in transgenic rice cell suspension cultures. Using comparative proteomic analysis, changes in the intracellular proteome in different culture media were identified. Culture media were found to be an important factor for the production of the recombinant target protein in this expression system, which was under the control of the rice α-amylase 3D (RAmy3D) promoter. In terms of hCTLA4Ig production, the N6 medium produced a 3.7-fold higher level of protein than the AA medium. In addition, the N6 medium provided better protein stability and cell viability. In the intracellular proteome analysis, we identified eight proteomes that were differentially expressed. These results could provide valuable information for the improvement of cell growth and target protein production.  相似文献   

3.
A reproducible method for cryopreservation of transgenic rice cells (Oryza sativa L. cv. Dongjin) producing recombinant human cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (hCTLA4Ig) has been established. Here, we assessed recovery media and investigated recombinant protein homogeneity after long-term preservation. For recovery of cryopreserved transgenic rice cells, AA medium was suitable in terms of both morphology and production of hCTLA4Ig. There were no differences in cell growth, sugar consumption, and hCTLA4Ig production between non-cryopreserved and cryopreserved cells for up to 1 month. hCTLA4Ig produced from cryopreserved cells was identical that of hCTLA4Ig from non-cryopreserved cells, as determined by analysis of its molecular weight and isoforms. For long-term preservation, cell viability was stably maintained at 61% for 26 months. In conclusion, these results demonstrate the possibility for reproducible cryocell-banking of transgenic rice cells without changes in the characteristics of cells and target proteins.  相似文献   

4.
Adsorptive loss of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) in transgenic rice cell suspension cultures was investigated using glass flasks, plastic flasks, disposable vessels, and stainless steel vessels. When hCTLA4Ig was added to the glass flasks containing sterile AA medium, a rapid decrease in the concentration of hCTLA4Ig, independent on pH, was observed resulting in more than 90% of the protein loss within 1 h due to the surface adsorption. When the same experiments were performed on four different types of culture equipments mentioned above, the lowest adsorption level was observed in the plastic flasks and the highest level was observed in the glass flasks. The use of the plastic flasks retarded the adsorptive loss of hCTLA4Ig at the early stage of the protein production. There was a significant increase in the production of hCTLA4Ig when the flasks were coated with bovine serum albumin. However, the spike test of purified hCTLA4Ig at two different concentrations of 15 and 100 mg L−1 in 500-mL spinner flasks confirmed that the amount of hCTLA4Ig adsorbed was dependent on the surface area of the flasks but not on the concentrations. In conclusion, although the protein adsorption affected the total amount of the protein yielded to some extent, it could be regarded as a minor factor in transgenic plant cell cultures with higher titer.  相似文献   

5.
Various polymers were used as transfection factors for small interfering RNA (siRNA) to effectively suppress human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) gene in transgenic rice cells. Five kinds of polymers (PEI, PVA, PVP, and 8 and 20 kDa PEGs) were applied for delivery of siRNA with lipofectamine used as a control. In the cytotoxicity test, all polymers except 8 kDa PEG showed nontoxicity in relation to cell viability. For transfection efficiency, polyplexes composed of siRNA and PEG (20 kDa) did not significantly reduce production of intracellular hCTLA4Ig. On the other hand, siRNA + PEI polyplexes showed the most effective suppression efficiency with regards to production of intracellular hCTLA4Ig among all other polyplexes (PVA, PVP, and PEG (8 kDa)). Effects of molecular weight ratios of siRNA:PEI were investigated to obtain optimal transfection efficiency and avoid excessive damage to cells. PEI-based polyplexes with a 1:10 ratio of siRNA:PEI reduced production of intracellular hCTLA4Ig up to 70.6% without alteration of cell viability. These results demonstrate that PEI-based polyplexes are easy to prepare, inexpensive, non-toxic, and effective to deliver siRNA to transgenic plant cell cultures.  相似文献   

6.
The new technology, two-dimensional difference gel electrophoresis (2D DIGE), uses fluorescent dyes to simplify the process of detecting and matching proteins between multiple gels by allowing for the separation of up to three separate protein samples within the same gel. In this study, recombinant human cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (hCTLA4lg) was produced in transgenic rice suspension cell cultures and the intracellular proteins were analyzed by 2D DIGE. The highest level of hCTLA4Ig (25.4 mg/L) was obtained five days after induction. The intracellular proteins expressed at both the growth and induction culture stages were separated and analyzed using DeCyder software. At least 2,218 spots were detected with two-fold thresholds and 95% confidence. We found that 29 spots increased and 20 spots decreased in their intensities during the production of recombinant hCTLA4Ig. In addition, the 2D Western blot of hCTLA4Ig revealed that this fusion protein was expressed in a variety of isoforms.  相似文献   

7.
《Process Biochemistry》2010,45(1):67-74
RAmy3D promoter is capable of expressing high levels of recombinant proteins in response to the depletion of sugar in transgenic rice cell suspension cultures. For this reason, it is necessary to change the growth medium into sugar-free production medium to produce the target protein, human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig), using the inducible RAmy3D promoter. Since the two-stage culture is a complex process to perform in large-scale, a fed-batch method was evaluated with the addition of concentrated amino acids before the depletion of sugar to induce hCTLA4Ig production. This fed-batch culture was found to be effective and the production of hCTLA4Ig was enhanced up to 1.2-fold compared to that of two-stage cultures with medium exchange. In addition, when this fed-batch culture was performed in a 15-l stirred-tank bioreactor, maximum hCTLA4Ig level was 76.5 mg l−1 at day 10.  相似文献   

8.
Human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4I g) fusion protein, a novel immunosuppressive agent, was expressed in transgenic rice cell suspension culture and its characteristics and in vitro activities were investigated. The expression vector pMYN409 was constructed to express hCTLA4I g under the control of rice alpha-amylase 3D (RAmy3D) promoter. Transgenic calli were prepared by particle bombardment mediated transformation and were screened for hCTLA4I g expression using ELISA. Under the induction condition by sugar starvation, suspension-cultured rice cells secreted hCTLA4I g into the media up to 31.4 mg/L in flask culture. The rice-derived hCTLA4Ig (hCTLA4IgP) was purified from the culture media with affinity chromatography using protein A and compared with CHO-derived hCTLA4Ig (hCTLA4IgM). Recombinant hCTLA4IgP has molecular weight of approximately 50 kDa on SDS-PAGE under reducing condition, which is a little different from that of hCTLA4IgM probably due to the difference of carbohydrate chain structures. Purified hCTLA4IgP was biologically active and was confirmed to suppress T-cell proliferation.  相似文献   

9.
Jung HS  Koo JK  Lee SJ  Park CI  Shin JY  Kim MH  Tan HK  Lim SM  Kim DI 《Biotechnology letters》2006,28(24):2039-2048
The avidity for CD80Ig/CD86Ig and the in vitro immunosuppressive effect of recombinant human cytotoxic T lymphocyte-associated antigen 4-immunoglobulin, produced by transgenic rice cell suspension cultures (hCTLA4IgP) with CHO-derived recombinant hCTLA4Ig (hCTLA4IgM), were measured. Surface plasmon resonance (SPR) was used for kinetic binding analysis: hCTLA4IgP and hCTLA4IgM had higher avidity for CD80Ig/CD86Ig than for CD28Ig, and the avidity for CD80Ig/CD86Ig was similar. hCTLA4IgP and hCTLA4IgM had similar in vitro immunosuppressive activity against the expression of T cell-derived cytokines, such as IL-2, IL-4, and IFN-γ, but did not suppress the expression of macrophage-derived cytokines, including TNF-α and IL-1β, as well as NO. Thus the immunosuppressive mechanism of hCTLA4IgP is also T cell-specific and it could therefore be used as an immunosuppressive agent with an equivalent potency to that of hCTLA4IgM.  相似文献   

10.
Transgenic suspension cells of Oryza sativa L. cv. Dongjin utilized as a host for producing recombinant human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) were preserved in liquid nitrogen (−196 °C) after slow prefreezing in a deep freezer (−70 °C). The development of an optimal procedure for long-term storage was investigated by the addition of various concentrations of cryoprotectant mixture and osmoticum in preculture media before cooling. A pre-deep-freezing time of 120 min was the most effective for maintaining cell viability. Compared with mannitol, sorbitol, trehalose, and NaCl under the same osmotic conditions, 0.5 M sucrose was found to be the best osmoticum for preculture media. The cryoprotectant comprising sucrose, glycerol, and dimethylsulfoxide (DMSO) was applied to the precultured cells, and a combination of 1 M sucrose, 1 M glycerol, and 1 M DMSO provided the best result. The viability with this optimized condition was 88% after cryocell-banking for 1 day. The expression of hCTLA4Ig in recovered callus from cryopreservation was also kept stable, and the production level was similar to that observed in noncryopreserved cultures.  相似文献   

11.
Jiang W  Zhou XY  Wang LL  Liu Q  Liu C  Wang Y  Wei H 《Transgenic research》2012,21(3):579-591
Xenogeneic skin, especially porcine skin, has already been used to cover large wounds in clinic practice of wound care. Our previous data showed that transgenic expression of human cytoxic T-lymphocyte associated antigen4-immunoglobulin (hCTLA4Ig) in murine skin graft remarkably prolonged its survival in xenogeneic burn wounds without extensive immunosuppression in recipients, suggesting that transgenic hCTLA4Ig expression in skin graft may be an effective and safe method to prolong its survival in xenogeneic wounds for coverage. Lentiviral transgenesis provides an extremely efficient and cost-effective method to produce transgenic animals. However, tissue-targeted transgenic expression of biologically functional protein by lentiviral transgenesis is rarely reported. In this work, a recombinant lentiviral vector (LV), named FKCW in this article, was constructed by inserting a skin-specific hCTLA4Ig expression cassette consisting of keratin 14 (K14) promoter, hCTLA4Ig coding sequence and an intronic fragment. Its efficacy for transgenesis and skin-specific expression of bio-active hCTLA4Ig protein was tested using mice as models. The LV FKCW was readily to be packaged and concentrated to high titres (1.287-6.254 × 10(9) TU/ml) by conventional lentivirus package system. Using eggs collected from only five mated females having been subjected to conventional super-ovulation treatment, 8 hCTLA4Ig transgenic founder mice were generated with the concentrated FKCW vector, and transgenic founder per injected and transferred egg was 6.3%, which was nearly 9-fold higher than that for DNA micro-injection with a similar transgene construct in our previous work. The lentiviral transgenic hCTLA4Ig exhibited strictly skin-specific expression at a level comparable to or even slightly higher than that of transgenic hCTLA4Ig delivered by micro-injection in a similar cassette. Lentiviral transgenic hCTLA4Ig protein remarkably suppressed human lymphocyte proliferation in vitro to a degree comparable to that of commercially purchased purified hCTLA4Ig protein with defined activity at similar concentrations. Besides, lentiviral hCTLA4Ig transgenic mouse skin grafted into rat burn wounds exhibited remarkably extended survival compared to wild-type skin of the same strain (13.8 ± 3.8 vs. 6.8 ± 3.0 days), indicating that lentiviral transgenic hCTLA4Ig did inhibit immune rejection against xenogeneic skin graft in vivo. These results laid down the foundation to further efficiently generate transgenic pigs skin-specifically expressing bio-active hCTLA4Ig by lentiviral transgenesis, and provided a demonstration that transgenic animals with tissue-targeted expression of biologically functional protein can be efficiently produced using LV.  相似文献   

12.
13.
皮肤组织特异性表达hCTLA4-Ig转基因小鼠品系的建立   总被引:2,自引:0,他引:2  
王勇  王峰超  魏泓  倪勇  吴军  高翔 《遗传学报》2005,32(9):916-922
为研究皮肤特异性高效表达hCTLA4-Ig分子对移植皮肤存活及受体免疫功能的影响,充分实现hCTLA4-Ig分子在皮肤移植中的免疫调控功能,利用K14(角蛋白14)基因启动子,构建了hCTLA4-Ig分子皮肤组织特异性表达载体,并通过受精卵原核显微注射技术制备了K14/hCTLA4-Ig转基因小鼠并建立了品系。通过RT-PCR和Northern blot分析表明,hCTLA4-Ig在转基因小鼠体内呈皮肤组织特异性高效表达;以GAPDH基因的表达量为内部参照分析表明,hCTLA4-Ig的表达水平在不同世代之间以及转基因个体的不同生命时相点之间保持相对恒定,说明皮肤组织特异性稳定表达hCTLA4-Ig的转基因小鼠品系已被建立。  相似文献   

14.
The effects of carbon deprivation on survival of methanotrophic bacteria were compared in cultures incubated in the presence and absence of oxygen in the starvation medium. Survival and recovery of the examined methanotrophs were generally highest for cultures starved under anoxic conditions as indicated by poststarvation measurements of methane oxidation, tetrazolium salt reduction, plate counts, and protein synthesis. Methylosinus trichosporium OB3b survived up to 6 weeks of carbon deprivation under anoxic conditions while maintaining a physiological state that allowed relatively rapid (hours) methane oxidation after substrate addition. A small fraction of cells starved under oxic and anoxic conditions (4 and 10%, respectively) survived more than 10 weeks but required several days for recovery on plates and in liquid medium. A non-spore-forming methanotroph, strain WP 12, displayed 36 to 118% of its initial methane oxidation capacity after 5 days of carbon deprivation. Oxidation rates varied with growth history prior to the experiments as well as with starvation conditions. Strain WP 12 starved under anoxic conditions showed up to 90% higher methane oxidation activity and 46% higher protein production after starvation than did cultures starved under oxic conditions. Only minor changes in biomass and morphology were seen for methanotrophic bacteria starved under anoxic conditions. In contrast, starvation under oxic conditions resulted in morphology changes and an initial 28 to 35% loss of cell protein. These data suggest that methanotrophic bacteria can survive carbon deprivation under anoxic conditions by using maintenance energy derived solely from an anaerobic endogenous metabolism. This capability could partly explain a significant potential for methane oxidation in environments not continuously supporting aerobic methanotrophic growth.  相似文献   

15.
A metabolically engineered Escherichia coli strain SBS550MG (pHL413) was used in this study to investigate the impact of various culture operating conditions for improving the specific succinate production rate for better final titer while maintaining the theoretical succinate yield on glucose in multiphase fed-batch cultures. Previously, we reported that changes in the level of aeration during the cell growth phase significantly modified gene expression profiles and metabolic fluxes in this system (Martinez et al. 2010). Based on these observations, the examination of culture conditions was mainly focused on the aerobic growth phase. It was found that 2–5 h of low dissolved oxygen culture during the aerobic phase improves cell productivity, but pH control during the aerobic phase was not favorable for the system. Cell viability has been identified as a major limiting factor for succinate production. Supplementing LB medium and betaine, an anti-osmotic stress reagent, did not improve cell activity. A higher succinate titer (537.8 mM) using the current metabolic engineering E. coli strain was achieved, which can potentially be improved further by increasing cell viability.  相似文献   

16.
The resistance of cultured mouse neuroblastoma cells, primary cultures of rat cerebellar neurons, and rat brain astrocytes to a block of aerobic metabolism was studied. Parameters such as lactate production and ATP content were measured in the presence of antimycin A and under various conditions of glucose, oxygen, and serum supply. The following conclusions can be drawn: (1) All cell types studied were characterized by an active production of lactate; (2) Incubation of the various cell types in the absence of glucose at normal oxygen tension did not affect ATP levels; (3) Respiration blocked by antimycin led to a Pasteur effect; (4) Neuroblastoma cells, but not the other cell types, were fully resistant to inhibition of respiration provided that sufficient glucose was supplied; (5) In the absence of glucose no stores of energy or utilizable substrate were present in the cell types studied when respiration was blocked; (6) In the presence of fetal calf serum anoxic neurons showed irreversible signs of degeneration.  相似文献   

17.
L-Lactate (4-32 mM) added exogenously to resting or depolarised rat forebrain synaptosomes led to a significant decrease in intrasynaptosomal pH. Similarly depolarisation-induced increases in intrasynaptosomal calcium, calcium uptake, and acetylcholine release were all inhibited. These effects mimicked those previously observed in synaptosomes under anoxic conditions and suggest that lactate may be involved in limiting the damage due to calcium accumulation occurring during ischaemia. D-Lactate (added exogenously up to 32 mM) did not produce similar effects on these parameters even though the concentrations of intrasynaptosomal D-lactate reached levels comparable to those obtained with L-lactate (at 8-16 mM exogenous concentration). The results suggest that the mechanism of action of lactate on these parameters is stereospecific for the L-enantiomer. The effect of glucose availability on lactate production was assessed to explore the role of substrate availability on ischaemia/anoxic events. When exogenous glucose was increased (10-60 mM), there was no further increase in lactate production in normoxic synaptosomes, which suggests that glucose is not limiting under these conditions. When glucose was removed, as may occur in complete ischaemia, there was a significant decrease in lactate production after 60 min under anoxic or normoxic conditions. It would seem likely therefore that the mechanism underlying the changes observed in synaptosomes incubated under conditions reflecting complete ischaemia does not involve lactate.  相似文献   

18.
Summary The heat evolution of aerobic batch cultures of growing yeast (Saccharomyces cerevisiae) in glucose media was investigated by a combination of a flow-microcalorimeter with a fermentor vessel. The course of heat production, cell production and the rate of oxygen consumption were qualitatively the same for all glucose concentrations between 10 mM and 100 mM. Under optimal aerobic conditions a triphasic growth was observed due to the fermentation of glucose to ethanol, respiration of ethanol to CO2 and acetate, and respiration of acetate to C02. Energy and carbon were found to be in balance for all glucose concentrations.  相似文献   

19.
It is now well documented that apoptosis represents the prevalent mode of cell death in hybridoma cultures. Apoptotic or programmed cell death occurs spontaneously in late exponential phase of batch cultures. Until lately, no specific triggering factors had been identified. Recently, we observed that glutamine, cystine or glucose deprivation induced apoptosis in both hybridoma and myeloma cell lines whereas accumulation of toxic metabolites induced necrotic cell death in these cells. Other triggering factors such as oxygen deprivation might also be responsible for induction of apoptosis. In the present study, induction of cell death by exposure to anoxia was examined in batch culture of the SP2/0-derived hybridoma D5 clone. The mode of cell death was studied by morphological examination of acridine orange-ethidium bromide stained cells in a 1.5 L bioreactor culture grown under anoxic conditions for 75 hours. Under such conditions, viable cell density levelled off rapidly and remained constant for 25 hours. After 45 hours of anoxia, cell viability had decreased to 30% and the dead cell population was found to be 90% apoptotic. In terms of cellular metabolism, anoxia resulted in an increase in the utilization rates of glucose and arginine, and in a decrease in the utilization rate of glutamine. The lactate production rate and the yield of lactate on glucose increased significantly while the MAb production rate decreased. These results demonstrate that glycolysis becomes the main source of energy under anoxic conditions.Cells incubated for 10 hours or less under anoxic conditions were able to recuperate almost immediately and displayed normal growth rates when reincubated in oxic conditions whereas cells incubated for 22 hours or more displayed reduced growth rates. Nonetheless, even after 22 h or 29 h of anoxia, cells reincubated in oxic conditions showed no further progression into apoptosis. Therefore, upon removal of the triggering signal, induction of apoptosis ceased.Abbreviations VNA Viable non-apoptotic cells - VA Viable apoptotic cells - NVNA Nonviable non-apoptotic or necrotic cells - NVA Nonviable apoptotic cells - CF Chromatin-free cells (late nonviable apoptotic cells) - AO Acridine orange - EB Ethidium Bromide - MAb Monoclocnal antibody - D.O. Dissolved oxygen - qMAb Specific MAb production rate (mg. (109 cells)–1.day–1) - Specific growth rate (h–1) - Xv Viable cell number (105 cells.mL–1) - Xt Total cell number (105 cells.mL–1) - Ylac/glc Yield coefficient of lactate on glucose (mM lactate produced/mM glucose consumed)  相似文献   

20.
A microcalorimetric method was developed to facilitate long-term assessment of energy balance in isolated fat cells. White rat adipocytes were primary cultured in glass ampoules with a matrix of agar-gel. Heat production was measured continuously over 3 days with an LKB BioActivityMonitor. In order to assist interpretation of the microcalorimetric measurements, glucose consumption and lactate and pyruvate production were determined in parallel cultures. Heat production, glucose consumption and lactate production were in an apparent steady state throughout the study whether employing aerobic (94 pW, 0.50 and 0.44 pmol/cell. h, respectively) or partial anaerobic experimental conditions (39 pW, 0.41 and 0.57 pmol/cell.h, respectively). However, oxygen availability influenced the apparent heat production and glucose and lactate metabolism. With partial anaerobiosis a 59% lower heat production, an 18% lower glucose consumption and a 30% higher lactate production than by employing aerobic experimental conditions were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号