首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rho family proteins are central to the regulation of cell polarity in eukaryotes. Rho of Plants-Guanyl nucleotide Exchange Factor (ROPGEF) can form self-organizing polar domains following co-expression with an Rho of Plants (ROP) and an ROP GTPase-Activating Protein (ROPGAP). Localization of ROPs in these domains has not been demonstrated, and the mechanisms underlying domain formation and function are not well understood. Here we show that six different ROPs form self-organizing domains when co-expressed with ROPGEF3 and GAP1 in Nicotiana benthamiana or Arabidopsis (Arabidopsis thaliana). Domain formation was associated with ROP–ROPGEF3 association, reduced ROP mobility, as revealed by time-lapse imaging and Fluorescence Recovery After Photobleaching beam size analysis, and was independent of Rho GTP Dissociation Inhibitor mediated recycling. The domain formation depended on the ROPs’ activation/inactivation cycles and interaction with anionic lipids via a C-terminal polybasic domain. Coexpression with the microtubule-associated protein ROP effector INTERACTOR OF CONSTITUTIVELY ACTIVE ROP 1 (ICR1) revealed differential function of the ROP domains in the ability to recruit ICR1. Taken together, the results reveal mechanisms underlying self-organizing ROP domain formation and function.

Plasma membrane self-organizing polarity domains of small GTP-binding proteins form upon their co-expression together with their activator and suppressor due to restriction of protein mobility.  相似文献   

2.
Plant Rho family GTPases (ROPs) have been investigated primarily for their functions in polarized cell growth. We previously showed that the maize (Zea mays) Leu-rich repeat receptor-like protein PANGLOSS1 (PAN1) promotes the polarization of asymmetric subsidiary mother cell (SMC) divisions during stomatal development. Here, we show that maize Type I ROPs 2 and 9 function together with PAN1 in this process. Partial loss of ROP2/9 function causes a weak SMC division polarity phenotype and strongly enhances this phenotype in pan1 mutants. Like PAN1, ROPs accumulate in an asymmetric manner in SMCs. Overexpression of yellow fluorescent protein-ROP2 is associated with its delocalization in SMCs and with aberrantly oriented SMC divisions. Polarized localization of ROPs depends on PAN1, but PAN1 localization is insensitive to depletion and depolarization of ROP. Membrane-associated Type I ROPs display increased nonionic detergent solubility in pan1 mutants, suggesting a role for PAN1 in membrane partitioning of ROPs. Finally, endogenous PAN1 and ROP proteins are physically associated with each other in maize tissue extracts, as demonstrated by reciprocal coimmunoprecipitation experiments. This study demonstrates that ROPs play a key role in polarization of plant cell division and cell growth and reveals a role for a receptor-like protein in spatial localization of ROPs.  相似文献   

3.
RAC/ROP GTPases are a family of plant-specific signaling molecules solely representing the Ras and Rho family of Ras-related G proteins in plants. RAC/ROPs potentially interact with cell surface-associated signal perception apparatus for a broad range of extracellular stimuli, including hormones, pathogen elicitors and abiotic stress, and mediate diverse cellular pathways in response to these signals. They are also known to interact with multiple effectors, affecting cellular and biochemical systems that regulate actin dynamics, reactive oxygen species production, proteolysis, and gene expression. RAC/ROPs are, thus, ideally suited as integrators for multiple signals and as coordinators of diverse cellular pathways to control growth, differentiation, development and defense responses. Recent findings that suggest how RAC/ROP signaling activity is regulated and how functional specificity can be achieved are discussed here.  相似文献   

4.
ROP/RAC GTPases are master regulators of cell polarity in plants, implicated in the regulation of diverse signaling cascades including cytoskeleton organization, vesicle trafficking, and Ca(2+) gradients [1-8]. The involvement of ROPs in differentiation processes is yet unknown. Here we show the identification of a novel ROP/RAC effector, designated interactor of constitutive active ROPs 1 (ICR1), that interacts with GTP-bound ROPs. ICR1 knockdown or silencing leads to cell deformation and loss of root stem-cell population. Ectopic expression of ICR1 phenocopies activated ROPs, inducing cell deformation of leaf-epidermis-pavement and root-hair cells [3, 5, 6, 9]. ICR1 is comprised of coiled-coil domains and forms complexes with itself and the exocyst vesicle-tethering complex subunit SEC3 [10-13]. The ICR1-SEC3 complexes can interact with ROPs in vivo. Plants overexpressing a ROP- and SEC3-noninteracting ICR1 mutant have a wild-type phenotype. Taken together, our results show that ICR1 is a scaffold-mediating formation of protein complexes that are required for cell polarity, linking ROP/RAC GTPases with vesicle trafficking and differentiation.  相似文献   

5.
Inka Fricke 《FEBS letters》2009,583(1):75-80
Plant G proteins of the ROP/RAC family regulate cellular processes including cytoskeletal rearrangement in polar growth. Activation of the ROP molecular switch is triggered by guanine nucleotide exchange factors. Plant-specific RopGEFs are exclusively active on ROPs despite their high homology to animal Rho proteins. Based on a sequence comparison of ROPs vs. animal Rho proteins together with structural data on distinct ROPs, we identified unique substrate determinants of RopGEF specificity by mutational analysis: asparagine 68 next to switch II, arginine 76 of a putative phosphorylation motif and the Rho insert are essential for substrate recognition by RopGEFs. These data also provide first evidence for a function of the Rho insert in interactions with GEFs.  相似文献   

6.
ROPs/RACs are the only known signaling Ras superfamily small GTPases in plants. As such they have been suggested to function as central regulators of diverse signaling cascades. The ROP/RAC signaling networks are largely unknown, however, because only few of their effector proteins have been identified. In a paper that was published in the June 5, 2007 issue of Current Biology we described the identification of a novel ROP/RAC effector designated ICR1 (Interactor of Constitutive active ROPs 1). We demonstrated that ICR1 functions as a scaffold that interacts with diverse but specific group of proteins including SEC3 subunit of the exocyst vesicle tethering complex. ICR1-SEC3 complexes can interact with ROPs in vivo and are thereby recruited to the plasma membrane. ICR1 knockdown or silencing leads to cell deformation and loss of the root stem cells population, and ectopic expression of ICR1 phenocopies activated ROPs/RACs. ICR1 presents a new paradigm in ROP/RAC signaling and integrates mechanisms regulating cell form and pattern formation at the whole plant level.Key words: Rho, auxin, root development, vesicle trafficking, RAC, ROP, polarity, Arabidopsis, exocyst  相似文献   

7.
Prenylation primarily by geranylgeranylation is required for membrane attachment and function of type I Rho of Plants (ROPs) and Gγ proteins, while type II ROPs are attached to the plasma membrane by S-acylation. Yet, it is not known how prenylation affects ROP membrane interaction dynamics and what are the functional redundancy and specificity of type I and type II ROPs. Here, we have used the expression of ROPs in mammalian cells together with geranylgeranylation and CaaX prenylation-deficient mutants to answer these questions. Our results show that the mechanism of type II ROP S-acylation and membrane attachment is unique to plants and likely responsible for the viability of plants in the absence of CaaX prenylation activity. The prenylation of ROPs determines their steady-state distribution between the plasma membrane and the cytosol but has little effect on membrane interaction dynamics. In addition, the prenyl group type has only minor effects on ROP function. Phenotypic analysis of the CaaX prenylation-deficient pluripetala mutant epidermal cells revealed that type I ROPs affect cell structure primarily on the adaxial side, while type II ROPs are functional and induce a novel cell division phenotype in this genetic background. Taken together, our studies show how prenyl and S-acyl lipid modifications affect ROP subcellular distribution, membrane interaction dynamics, and function.  相似文献   

8.
ROPs:植物细胞内多种信号通路的分子开关   总被引:1,自引:0,他引:1  
植物RHO相关蛋白GTPases(RHO-related GTPases of plants, ROPs)是广泛存在于植物中的一类信号转导G蛋白(又称GTP结合蛋白),其通过结合GDP或GTP在非活性和活性状态间进行切换,进而在细胞极性控制、形态发育、激素水平调控、逆境反应等诸多植物生命活动的信号转导过程中扮演重要的分子开关角色。本文对ROP蛋白的结构域及基于蛋白质结构分类进行了介绍,并对拟南芥、玉米、水稻和大麦中的ROP家族蛋白质进行了系统进化分析。分析结果表明,这些植物中的ROP蛋白根据蛋白质结构域组成可分为Ⅰ类(typeⅠ)和Ⅱ类(typeⅡ)两种类型,而根据蛋白质序列的保守性可将其在植物中的ROP蛋白划分为4个进化枝。本综述不但对ROP蛋白作为分子开关在细胞内调控各种信号通路的机制进行了叙述,还对ROP在花粉管、根毛及植物表皮铺盖细胞极性发育,以及其他抗逆反应中的具体作用和机制及研究进展进行了阐述。本文还对ROP蛋白在ABA、IAA、BR等植物激素信号传导过程中的调控作用及研究进展进行了阐述。本文对植物ROP蛋白研究过程中尚未解决的问题,例如不同的ROP蛋白在同一个信号通路中的作用为何如此不同,以及ROP是如何协调不同的信号通路以共同调控一个植物发育或者生理过程等问题进行了总结,并在此基础上对未来的研究方向进行了展望。  相似文献   

9.
ROP/RAC GTPase: an old new master regulator for plant signaling   总被引:17,自引:0,他引:17  
The ROP family of small GTPases has emerged as a versatile and pivotal regulator in plant signal transduction. Recent studies have implicated ROP signaling in diverse processes ranging from cytoskeletal organization to hormone and stress responses. Acting as a switch early in signaling cascades, ROPs are also capable of orchestrating several downstream pathways to amplify a specific signal.  相似文献   

10.
Plant ROP (Rho of plants) proteins form a unique subgroup within the family of Rho-type small G-proteins of eukaryotes. In this paper we demonstrate that the phosphomimetic mutation of a serine residue conserved in all Rho proteins affects the signaling properties of plant ROPs. We found that the S74E mutation in Medicago ROP6 and Arabidopsis ROP4 prevented the binding of these proteins to their plant-specific upstream activator the plant-specific ROP nucleotide exchanger (PRONE)-domain-containing RopGEF (guanine nucleotide exchange factor) protein and abolished the PRONE-mediated nucleotide exchange reaction in vitro. Structural modeling supported the hypothesis that potential phosphorylation of the S74 residue interferes with the binding of the PRONE-domain to the adjacent plant-specific R76 residue which plays an important role in functional ROP-PRONE interaction. Moreover, we show that while the binding of constitutively active MsROP6 to the effector protein RIC (ROP-interactive CRIB-motif-containing protein) was not affected by the S74E mutation, the capability of this mutated protein to bind and activate the RRK1 kinase in vitro was reduced. These observations are in agreement with the morphology of tobacco pollen tubes expressing mutant forms of yellow fluorescent protein (YFP):MsROP6. The S74E mutation in MsROP6 had no influence on pollen tube morphology and attenuated the phenotype of a constitutively active form of MsROP6. The presented Medicago and Arabidopsis data support the notion that the phosphorylation of the serine residue in ROPs corresponding to S74 in Medicago ROP6 could be a general principle for regulating ROP activation and signaling in plants.  相似文献   

11.
Most eukaryotic cells are polarized. Common toolbox regulating cell polarization includes Rho guanosine triphosphatases (GTPases), in which spatiotemporal activation is regulated by a plethora of regulators. Rho of plants (ROPs) are the only Rho GTPases in plants. Although vesicular trafficking was hinted in the regulation of ROPs, it was unclear where vesicle‐carried ROP starts, whether it is dynamically regulated, and which components participate in vesicle‐mediated ROP targeting. In addition, although vesicle trafficking and guanine nucleotide inhibitor (GDI) pathways in Rho signaling have been extensively studied in yeast, it is unknown whether the two pathways interplay. Unclear are also cellular and developmental consequences of their interaction in multicellular organisms. Here, we show that the dynamic targeting of ROP through vesicles requires coat protein complex II and ADP‐ribosylation factor 1‐mediated post‐Golgi trafficking. Trafficking of vesicle‐carried ROPs between the plasma membrane and the trans‐Golgi network is mediated through adaptor protein 1 and sterol‐mediated endocytosis. Finally, we show that GDI and vesicle trafficking synergistically regulate cell polarization and ROP targeting, suggesting that the establishment and maintenance of cell polarity is regulated by an evolutionarily conserved mechanism.  相似文献   

12.
RopGAPs are GTPase-activating proteins (GAPs) for plant Rho proteins (ROPs). The largest RopGAP family is characterized by the plant-specific combination of a classical RhoGAP domain and a Cdc42/Rac interactive binding (CRIB) motif, which, in animal and fungi, has never been found in GAPs but in effectors for Cdc42 and Rac1. Very little is known about the molecular mechanism of the RopGAP activity including the regulatory role of the CRIB motif. Previously, we have shown that they are dimeric and form a 2:2 complex with ROPs. Here, we analyze the kinetics of the GAP-mediated GTP hydrolysis of ROPs using wild-type and mutant RopGAP2 from Arabidopsis thaliana. For an efficient GAP activity, RopGAP2 requires both the catalytic Arg159 in its GAP domain indicating a similar catalytic machinery as in animal RhoGAPs and the CRIB motif, which mediates high affinity and specificity in binding. The dimeric RopGAP2 is unique in that it stimulates ROP·GTP hydrolysis in a sequential manner with a 10-fold difference between the hydrolysis rates of the two active sites. Using particular CRIB point and deletion mutants lead us to conclude that the sequential mechanism is likely due to steric hindrance induced by the Arg fingers and/or the CRIB motifs after binding of two ROP molecules.  相似文献   

13.
The allelic combination of ROP18/ROP5 genes of Toxoplasma gondii has been shown to be highly predictive of mouse virulence in canonical isolates and strains. The aims of this study were to analyze the alleles present in the ROP18/ROP5 genes from T. gondii isolates obtained in Argentina, to associate the results with the virulence registered in mouse model, and to compare with other isolates and reference strains using a phylogenetic network. Fourteen T. gondii isolates from Argentina were analyzed by nPCR-RFLP for ROP18/ROP5. Phylogenetic network analysis was inferred using the ToxoDB genotypes and the ROPs molecular markers. All isolates and reference strains were categorized as lethal or non-lethal. As results, combinations 2/2, 3/3 and 4/3 for ROP18/ROP5 were detected in 12 isolates, whereas only alleles 1 and 2 of ROP5 were detected in 2 isolates. The majority of the isolates had a mouse virulence matching to that predicted by the ROP18/ROP5 allele combination. The 3 isolates that differed from the expected virulence presented non-clonal genotypes. ROPs incorporation increased the accuracy of the phylogenetic network relations among the T. gondii samples, prevailing the clustering according to regions. Our results indicate a predominance of type 3 allele in both ROP18 and ROP5 markers and an association of allelic profiles 3/3 and 4/3 of non-clonal genotypes from Argentina, both with virulent and avirulent profiles in mice.  相似文献   

14.
Small monomeric G-proteins of the plant ras (rat sarcome oncogene product) related C3 botulinum toxin substrate (RAC)/Rho of plants (ROP) family are molecular switches in signal transduction of many cellular processes. RAC/ROPs regulate hormone effects, subcellular gradients of Ca2+, the organisation of the actin cytoskeleton and the production of reactive oxygen intermediates. Therefore, we followed a genetic bottom-up strategy to study the role of these proteins during the interaction of barley (Hordeum vulgare L.) with the fungal biotrophic pathogen Blumeria graminis f.sp. hordei (Bgh). We identified six barley RAC/ROP proteins and studied their gene expression. Five out of six Rac/Rop genes were expressed constitutively in the leaf epidermis, which is the site of interaction with Bgh. None of the genes showed enhancement of mRNA abundance after inoculation with Bgh. After microprojectile mediated transformation of single barley epidermal cells with constitutively activated mutant RAC/ROP proteins, we found an RAC/ROP-specific enhancement of pathogen accessibility, tagging HvRACB, HvRAC3 and HvROP6 as host proteins potentially involved in the establishment of susceptibility to Bgh. Confocal laser scanning microscopy (CLSM) of green fluorescent protein (GFP):HvRAC/ROP-transformed cells revealed varying strengths of plasma membrane association of barley RAC/ROPs. The C-terminal CAAX motif for presumable prenylation or the C-terminal hypervariable region (HVR), respectively, were required for membrane association of the RAC/ROPs. Proper intracellular localisation was essential for HvRACB and HvRAC3 function. Together, our data support the view that different paths of host signal transduction via RAC/ROP G-proteins are involved in processes supporting parasitic entry into epidermal host cells.  相似文献   

15.
16.
17.
Cell polarity plays an important role in plant development, but the mechanisms that first establish polarity cues remain obscure. By contrast, a flurry of information has recently emerged on the elaboration of cell shape from such unknown initial cell-polarity cues. Recent studies suggest that Rho-related GTPases in plants (ROPs), and their effector targets among the ROP-interactive CRIB motif-containing proteins (RICs), mediate two antagonistic pathways that have opposing action on cell polarization. ROP proteins appear to interact directly with upstream regulators of the ARP2/3 complex, which are conserved modulators of the actin cytoskeleton. ROP function is dependent on the class 1 ADP-ribosylation factors (ARFs), which are core components of the vesicle transport machinery that are also involved in the polar localization of PIN-FORMED (PIN) family auxin efflux facilitators.  相似文献   

18.
Four rhoptry proteins (ROP) of Toxoplasma gondii previously identified with mAb have been affinity purified and analyzed by MS; the data obtained allowed the genomic sequences to be assigned to these proteins. As previously suggested for some of them by antibody crossreactivity, these proteins were shown to belong to a family, the prototype of which being ROP2. We describe here the proteins ROP2, 4, 5, and 7. These four proteins correspond to the most abundant products of a gene family that comprises several members which we have identified in genomic and EST libraries. Eight additional sequences were found and we have cloned four of them. All members of the ROP2 family contain a protein-kinase-like domain, but only some of them possess a bona fide kinase catalytic site. Molecular modeling of the kinase domain demonstrates the conservation of residues critical for the stabilization of the protein-kinase fold, especially within a hydrophobic segment described so far as transmembrane and which appears as an helix buried inside the protein. The concomitant synthesis of these ROPs by T. gondii tachyzoites suggests a specific role for each of these proteins, especially in the early interaction with the host cell upon invasion.  相似文献   

19.
Structure and function of Rho-type molecular switches in plants.   总被引:5,自引:0,他引:5  
Molecular switches of the Rho family, in concert with their associated regulators and effectors are well known as important control elements of vital signaling pathways in eucaryotic organisms. Yet, this knowledge has so far been established mainly from animal and fungal studies. However, during the recent years, the Rho switch has gone increasingly green as well, and it turned out that the homologous system in plants holds some distinctive features regarding structures, functions and molecular mechanisms for signal transduction. In this review, we give an overview about the structural characteristics of the Rho proteins of plants, termed ROP, highlighting some exciting differences to their animal and fungal counterparts. We further address the unique regulators and effectors of the ROPs and discuss the structural basis for the function and interaction of those proteins in ROP controlled reaction cascades. We finally intend to stimulate the demand for future three-dimensional structures that advance our understanding of the ROP switch in plants.  相似文献   

20.

Background

Local activation of Rho GTPases is important for many functions including cell polarity, morphology, movement, and growth. Although a number of molecules affecting Rho-of-Plants small GTPase (ROP) signalling are known, it remains unclear how ROP activity becomes spatially organised. Arabidopsis root hair cells produce patches of ROP at consistent and predictable subcellular locations, where root hair growth subsequently occurs.

Methodology/Principal Findings

We present a mathematical model to show how interaction of the plant hormone auxin with ROPs could spontaneously lead to localised patches of active ROP via a Turing or Turing-like mechanism. Our results suggest that correct positioning of the ROP patch depends on the cell length, low diffusion of active ROP, a gradient in auxin concentration, and ROP levels. Our theory provides a unique explanation linking the molecular biology to the root hair phenotypes of multiple mutants and transgenic lines, including OX-ROP, CA-rop, aux1, axr3, tip1, eto1, etr1, and the triple mutant aux1 ein2 gnom eb.

Conclusions/Significance

We show how interactions between Rho GTPases (in this case ROPs) and regulatory molecules (in this case auxin) could produce characteristic subcellular patterning that subsequently affects cell shape. This has important implications for research on the morphogenesis of plants and other eukaryotes. Our results also illustrate how gradient-regulated Turing systems provide a particularly robust and flexible mechanism for pattern formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号