首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA) studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (n = 6,247) to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs) using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844) within the gene encoding the cardiac sodium channel (SCN5A) with genome-wide significant association (p<2.5×10−8) in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta  = 5.1 msec per minor allele, 95% CI  = 4.1–6.1, p = 3×10−23). This SNP was also associated with PR interval (beta = 2.4 msec per minor allele, 95% CI = 1.8–3.0, p = 3×10−16) in individuals of European ancestry (n = 14,042), but with a smaller effect size (p for heterogeneity <0.001) and variability explained (0.5%). Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015), MEIS1 (rs10865355), and TBX5 (rs7312625) that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, p = 0.009) in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and Asian samples and identify an association signal at one of these loci that is more strongly associated with PR interval in African Americans than in Europeans.  相似文献   

2.
Dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP) were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39%) and idiopathic DCM (p = 1.06×10−6, OR = 0.67 [95% CI 0.57–0.79] for the minor allele T). Three more SNPs showed p < 2.21×10−5. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (n = 564, n = 981 controls, p = 2.07×10−3, OR = 0.79 [95% CI 0.67–0.92]), France 1 (n = 433 cases, n = 395 controls, p = 3.73×10−3, OR = 0.74 [95% CI 0.60–0.91]), and France 2 (n = 249 cases, n = 380 controls, p = 2.26×10−4, OR = 0.63 [95% CI 0.50–0.81]). The combined analysis of all four studies including a total of n = 1,910 cases and n = 3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (p = 5.28×10−13, OR = 0.72 [95% CI 0.65–0.78]). None of the other three SNPs showed significant results in the replication stage.This finding of the HSPB7 gene from a genetic search for idiopathic DCM using a large SNP panel underscores the influence of common polymorphisms on DCM susceptibility.  相似文献   

3.
Previous genome-wide association (GWA) studies have identified SNPs associated with areal bone mineral density (aBMD). However, this measure is influenced by several different skeletal parameters, such as periosteal expansion, cortical bone mineral density (BMDC) cortical thickness, trabecular number, and trabecular thickness, which may be under distinct biological and genetic control. We have carried out a GWA and replication study of BMDC, as measured by peripheral quantitative computed tomography (pQCT), a more homogenous and valid measure of actual volumetric bone density. After initial GWA meta-analysis of two cohorts (ALSPAC n = 999, aged ∼15 years and GOOD n = 935, aged ∼19 years), we attempted to replicate the BMDC associations that had p<1×10−5 in an independent sample of ALSPAC children (n = 2803) and in a cohort of elderly men (MrOS Sweden, n = 1052). The rs1021188 SNP (near RANKL) was associated with BMDC in all cohorts (overall p = 2×10−14, n = 5739). Each minor allele was associated with a decrease in BMDC of ∼0.14SD. There was also evidence for an interaction between this variant and sex (p = 0.01), with a stronger effect in males than females (at age 15, males −6.77mg/cm3 per C allele, p = 2×10−6; females −2.79 mg/cm3 per C allele, p = 0.004). Furthermore, in a preliminary analysis, the rs1021188 minor C allele was associated with higher circulating levels of sRANKL (p<0.005). We show this variant to be independent from the previously aBMD associated SNP (rs9594738) and possibly from a third variant in the same RANKL region, which demonstrates important allelic heterogeneity at this locus. Associations with skeletal parameters reflecting bone dimensions were either not found or were much less pronounced. This finding implicates RANKL as a locus containing variation associated with volumetric bone density and provides further insight into the mechanism by which the RANK/RANKL/OPG pathway may be involved in skeletal development.  相似文献   

4.

Background

Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme) obesity.

Methodology/Principal Findings

a) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency ≥10%) with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13×10−7, corrected p = 0.0494; odds ratio (OR)CT 1.67, 95% confidence interval (CI) 1.22–2.27; ORTT 2.76, 95% CI 1.88–4.03) belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p<0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.

Conclusions/Significance

Our GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study, thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.  相似文献   

5.
The Guinea-Bissau family of strains is a unique group of the Mycobacterium tuberculosis complex that, although genotypically closely related, phenotypically demonstrates considerable heterogeneity. We have investigated 414 M. tuberculosis complex strains collected in Guinea-Bissau between 1989 and 2008 in order to further characterize the Guinea-Bissau family of strains. To determine the strain lineages present in the study sample, binary outcomes of spoligotyping were compared with spoligotypes existing in the international database SITVIT2. The major circulating M. tuberculosis clades ranked in the following order: AFRI (n = 195, 47.10%), Latin-American-Mediterranean (LAM) (n = 75, 18.12%), ill-defined T clade (n = 53, 12.8%), Haarlem (n = 37, 8.85%), East-African-Indian (EAI) (n = 25, 6.04%), Unknown (n = 12, 2.87%), Beijing (n = 7, 1.68%), X clade (n = 4, 0.96%), Manu (n = 4, 0.97%), CAS (n = 2, 0.48%). Two strains of the LAM clade isolated in 2007 belonged to the Cameroon family (SIT61). All AFRI isolates except one belonged to the Guinea-Bissau family, i.e. they have an AFRI_1 spoligotype pattern, they have a distinct RFLP pattern with low numbers of IS6110 insertions, and they lack the regions of difference RD7, RD8, RD9 and RD10, RD701 and RD702. This profile classifies the Guinea-Bissau family, irrespective of phenotypic biovar, as part of the M. africanum West African 2 lineage, or the AFRI_1 sublineage according to the spoligtyping nomenclature. Guinea-Bissau family strains display a variation of biochemical traits classically used to differentiate M. tuberculosis from M. bovis. Yet, the differential expression of these biochemical traits was not related to any genes so far investigated (narGHJI and pncA). Guinea-Bissau has the highest prevalence of M. africanum recorded in the African continent, and the Guinea-Bissau family shows a high phylogeographical specificity for Western Africa, with Guinea-Bissau being the epicenter. Trends over time however indicate that this family of strains is waning in most parts of Western Africa, including Guinea-Bissau (p = 0.048).  相似文献   

6.

Background

Osteopontin represents a multifunctional molecule playing a pivotal role in chronic inflammatory and autoimmune diseases. Its expression is increased in inflammatory bowel disease (IBD). The aim of our study was to analyze the association of osteopontin (OPN/SPP1) gene variants in a large cohort of IBD patients.

Methodology/Principal Findings

Genomic DNA from 2819 Caucasian individuals (n = 841 patients with Crohn''s disease (CD), n = 473 patients with ulcerative colitis (UC), and n = 1505 healthy unrelated controls) was analyzed for nine OPN SNPs (rs2728127, rs2853744, rs11730582, rs11739060, rs28357094, rs4754 = p.Asp80Asp, rs1126616 = p.Ala236Ala, rs1126772 and rs9138). Considering the important role of osteopontin in Th17-mediated diseases, we performed analysis for epistasis with IBD-associated IL23R variants and analyzed serum levels of the Th17 cytokine IL-22. For four OPN SNPs (rs4754, rs1126616, rs1126772 and rs9138), we observed significantly different distributions between male and female CD patients. rs4754 was protective in male CD patients (p = 0.0004, OR = 0.69). None of the other investigated OPN SNPs was associated with CD or UC susceptibility. However, several OPN haplotypes showed significant associations with CD susceptibility. The strongest association was found for a haplotype consisting of the 8 OPN SNPs rs2728127-rs2853744-rs11730582-rs11439060-rs28357094-rs112661-rs1126772-rs9138 (omnibus p-value = 2.07×10−8). Overall, the mean IL-22 secretion in the combined group of OPN minor allele carriers with CD was significantly lower than that of CD patients with OPN wildtype alleles (p = 3.66×10−5). There was evidence for weak epistasis between the OPN SNP rs28357094 with the IL23R SNP rs10489629 (p = 4.18×10−2) and between OPN SNP rs1126616 and IL23R SNP rs2201841 (p = 4.18×10−2) but none of these associations remained significant after Bonferroni correction.

Conclusions/Significance

Our study identified OPN haplotypes as modifiers of CD susceptibility, while the combined effects of certain OPN variants may modulate IL-22 secretion.  相似文献   

7.

Background

Different clonal types of Toxoplasma gondii are thought to be associated with distinct clinical manifestations of infections. Serotyping is a novel technique which may allow to determine the clonal type of T. gondii humans are infected with and to extend typing studies to larger populations which include infected but non-diseased individuals.

Methodology

A peptide-microarray test for T. gondii serotyping was established with 54 previously published synthetic peptides, which mimic clonal type-specific epitopes. The test was applied to human sera (n = 174) collected from individuals with an acute T. gondii infection (n = 21), a latent T. gondii infection (n = 53) and from T. gondii-seropositive forest workers (n = 100).

Findings

The majority (n = 124; 71%) of all T. gondii seropositive human sera showed reactions against synthetic peptides with sequences specific for clonal type II (type II peptides). Type I and type III peptides were recognized by 42% (n = 73) or 16% (n = 28) of the human sera, respectively, while type II–III, type I–III or type I–II peptides were recognized by 49% (n = 85), 36% (n = 62) or 14% (n = 25) of the sera, respectively. Highest reaction intensities were observed with synthetic peptides mimicking type II-specific epitopes. A proportion of the sera (n = 22; 13%) showed no reaction with type-specific peptides. Individuals with acute toxoplasmosis reacted with a statistically significantly higher number of peptides as compared to individuals with latent T. gondii infection or seropositive forest workers.

Conclusions

Type II-specific reactions were overrepresented and higher in intensity in the study population, which was in accord with genotyping studies on T. gondii oocysts previously conducted in the same area. There were also individuals with type I- or type III-specific reactions. Well-characterized reference sera and further specific peptide markers are needed to establish and to perform future serotyping approaches with higher resolution.  相似文献   

8.

Background

Recently, several Genome Wide Association (GWA) studies in populations of European descent have identified and validated novel single nucleotide polymorphisms (SNPs), highly associated with type 2 diabetes (T2D). Our aims were to validate these markers in other European and non-European populations, then to assess their combined effect in a large French study comparing T2D and normal glucose tolerant (NGT) individuals.

Methodology/Principal Findings

In the same French population analyzed in our previous GWA study (3,295 T2D and 3,595 NGT), strong associations with T2D were found for CDKAL1 (ORrs7756992 = 1.30[1.19–1.42], P = 2.3×10−9), CDKN2A/2B (ORrs10811661 = 0.74[0.66–0.82], P = 3.5×10−8) and more modestly for IGFBP2 (ORrs1470579 = 1.17[1.07–1.27], P = 0.0003) SNPs. These results were replicated in both Israeli Ashkenazi (577 T2D and 552 NGT) and Austrian (504 T2D and 753 NGT) populations (except for CDKAL1) but not in the Moroccan population (521 T2D and 423 NGT). In the overall group of French subjects (4,232 T2D and 4,595 NGT), IGFBP2 and CXCR4 synergistically interacted with (LOC38776, SLC30A8, HHEX) and (NGN3, CDKN2A/2B), respectively, encoding for proteins presumably regulating pancreatic endocrine cell development and function. The T2D risk increased strongly when risk alleles, including the previously discovered T2D-associated TCF7L2 rs7903146 SNP, were combined (8.68-fold for the 14% of French individuals carrying 18 to 30 risk alleles with an allelic OR of 1.24). With an area under the ROC curve of 0.86, only 15 novel loci were necessary to discriminate French individuals susceptible to develop T2D.

Conclusions/Significance

In addition to TCF7L2, SLC30A8 and HHEX, initially identified by the French GWA scan, CDKAL1, IGFBP2 and CDKN2A/2B strongly associate with T2D in French individuals, and mostly in populations of Central European descent but not in Moroccan subjects. Genes expressed in the pancreas interact together and their combined effect dramatically increases the risk for T2D, opening avenues for the development of genetic prediction tests.  相似文献   

9.
10.

Background

Colon cancer is one of the leading causes of cancer related deaths. Its impact on African Americans (AAs) is higher than in the general population both in the incidence and mortality from the disease. Colon cancer aggressiveness in AAs as well as non-frequent check-ups and follow up in this population have been proposed as ways to explain the observed discrepancies. These facts made the detection of early carcinogenesis markers in this population a priority.

Materials and Methods

Here, we analyzed 50 colon adenomas from AA patients for both microsatellite instability (MSI) and the methylation status of SLC5A8 gene. This gene''s product is involved in the transport of butyrate that has anti-proliferative properties through its effects on histone acetylation and gene expression. A proteomic analysis to check the expressed histones in adenoma and normal tissues was also performed.

Results

The analyzed samples displayed 82% (n = 41) methylation level of SLC5A8 gene in adenomas. The MSI-H (high) adenoma were about 18% (n = 9) while the rest were mostly MSS (microsatellite stable) with few MSI-L (Low). No association was found between SLC5A8 methylation and the MSI status. Also, there was no association between SLC5A8 methylation and the sex and age of the patients. However, there were more right sided adenomas with SLC5A8 methylation than the left sided ones. The proteomic analysis revealed distinct histone expression profiles between normal and adenoma tissues.

Conclusion

SLC5A8 is highly methylated in AA colon adenomas which points to its potential use as a marker for early detection. The MSI rate is similar to that found in colon cancer tumors in AAs. These findings suggest that both processes stem from the same epigenetic and genetic events occurring at an early stage in colon carcinogenesis in AAs.  相似文献   

11.
This study aimed to characterize the population structure of Mycobacterium tuberculosis in Pskov oblast in northwestern Russia, to view it in the geographical context, to compare drug resistance properties across major genetic families. Ninety M. tuberculosis strains from tuberculosis (TB) patients, permanent residents in Pskov oblast were subjected to LAM-specific IS6110-PCR and spoligotyping, followed by comparison with SITVITWEB and MIRU-VNTRplus databases. The Beijing genotype (n = 40) was found the most prevalent followed by LAM (n = 18), T (n = 13), Haarlem (n = 10), Ural (n = 5), and Manu2 (n = 1); the family status remained unknown for 3 isolates. The high rate of Beijing genotype and prevalence of LAM family are similar to those in the other Russian settings. A feature specific for M. tuberculosis population in Pskov is a relatively higher rate of Haarlem and T types. Beijing strains were further typed with 12-MIRU (followed by comparison with proprietary global database) and 3 hypervariable loci QUB-3232, VNTR-3820, VNTR-4120. The 12-MIRU typing differentiated 40 Beijing strains into 14 types (HGI = 0.82) while two largest types were M2 (223325153533) prevalent throughout former USSR and M11 (223325173533) prevalent in Russia and East Asia. The use of 3 hypervariable loci increased a discrimination of the Beijing strains (18 profiles, HGI = 0.89). Both major families Beijing and LAM had similar rate of MDR strains (62.5 and 55.6%, respectively) that was significantly higher than in other strains (21.9%; P = 0.001 and 0.03, respectively). The rpoB531 mutations were more frequently found in Beijing strains while LAM drug resistant strains mainly harbored rpoB516 and inhA −15 mutations. Taken together with a high rate of multidrug resistance among Beijing strains from new TB cases (79.3% versus 44.4% in LAM), these findings suggest the critical impact of the Beijing genotype on the current situation with MDR-TB in the Pskov region in northwestern Russia.  相似文献   

12.
Hypermethylation of the promoter of the tumor suppressor gene, adenomatous polyposis coli (APC), occurs in various malignancies, including hepatocellular carcinoma (HCC). However, reports on the specificity of the methylation of the APC gene for HCC have varied. To gain insight into how these variations occur, bisulfite PCR sequencing was performed to analyze the methylation status of both sense and antisense strands of the APC gene in samples of HCC tissue, matched adjacent non-HCC liver tissue, hepatitis, cirrhosis, and normal liver tissues. DNA derived from fetal liver and 12 nonhepatic normal tissue was also examined. These experiments revealed liver-specific, antisense strand-biased CpG methylation of the APC gene and suggested that, although methylation of the antisense strand of the APC gene exists in normal liver and other non-HCC disease liver tissue, methylation of the sense strand of the APC gene occurs predominantly in HCC. To determine the effect of the DNA strand on the specificity of the methylated APC gene as a biomarker for HCC detection, quantitative methylation-specific PCR assays for sense and antisense strand DNA were developed and performed on DNA isolated from HCC (n = 58), matched adjacent non-HCC (n = 58), cirrhosis (n = 41), and hepatitis (n = 39). Receiver operating characteristic curves were constructed. With the cutoff value set at the limit of detection, the specificity of sense and antisense strand methylation was 84% and 43%, respectively, and sensitivity was 67.2% and 72.4%, respectively. This result demonstrated that the identity of the methylated DNA strand impacted the specificity of APC for HCC detection. Interestingly, methylation of the sense strand of APC occurred in 40% of HCCs from patients with serum AFP levels less than 20 ng/mL, suggesting a potential role for APC as a biomarker to complement AFP in HCC screening.  相似文献   

13.
Yu H  Gao Z  Feng Z  Shu Y  Xiang N  Zhou L  Huai Y  Feng L  Peng Z  Li Z  Xu C  Li J  Hu C  Li Q  Xu X  Liu X  Liu Z  Xu L  Chen Y  Luo H  Wei L  Zhang X  Xin J  Guo J  Wang Q  Yuan Z  Zhou L  Zhang K  Zhang W  Yang J  Zhong X  Xia S  Li L  Cheng J  Ma E  He P  Lee SS  Wang Y  Uyeki TM  Yang W 《PloS one》2008,3(8):e2985

Background

While human cases of highly pathogenic avian influenza A (H5N1) virus infection continue to increase globally, available clinical data on H5N1 cases are limited. We conducted a retrospective study of 26 confirmed human H5N1 cases identified through surveillance in China from October 2005 through April 2008.

Methodology/Principal Findings

Data were collected from hospital medical records of H5N1 cases and analyzed. The median age was 29 years (range 6–62) and 58% were female. Many H5N1 cases reported fever (92%) and cough (58%) at illness onset, and had lower respiratory findings of tachypnea and dyspnea at admission. All cases progressed rapidly to bilateral pneumonia. Clinical complications included acute respiratory distress syndrome (ARDS, 81%), cardiac failure (50%), elevated aminotransaminases (43%), and renal dysfunction (17%). Fatal cases had a lower median nadir platelet count (64.5×109 cells/L vs 93.0×109 cells/L, p = 0.02), higher median peak lactic dehydrogenase (LDH) level (1982.5 U/L vs 1230.0 U/L, p = 0.001), higher percentage of ARDS (94% [n = 16] vs 56% [n = 5], p = 0.034) and more frequent cardiac failure (71% [n = 12] vs 11% [n = 1], p = 0.011) than nonfatal cases. A higher proportion of patients who received antiviral drugs survived compared to untreated (67% [8/12] vs 7% [1/14], p = 0.003).

Conclusions/Significance

The clinical course of Chinese H5N1 cases is characterized by fever and cough initially, with rapid progression to lower respiratory disease. Decreased platelet count, elevated LDH level, ARDS and cardiac failure were associated with fatal outcomes. Clinical management of H5N1 cases should be standardized in China to include early antiviral treatment for suspected H5N1 cases.  相似文献   

14.
Basing on the assumption that frontotemporal lobar degeneration (FTLD), schizophrenia and bipolar disorder (BPD) might share common aetiological mechanisms, we analyzed genetic variation in the FTLD risk gene progranulin (GRN) in a German population of patients with schizophrenia (n = 271) or BPD (n = 237) as compared with 574 age-, gender- and ethnicity-matched controls. Furthermore, we measured plasma progranulin levels in 26 German BPD patients as well as in 61 Italian BPD patients and 29 matched controls.A significantly decreased allelic frequency of the minor versus the wild-type allele was observed for rs2879096 (23.2 versus 34.2%, P<0.001, OR:0.63, 95%CI:0.49–0.80), rs4792938 (30.7 versus 39.7%, P = 0.005, OR: 0.70, 95%CI: 0.55–0.89) and rs5848 (30.3 versus 36.8, P = 0.007, OR: 0.71, 95%CI: 0.56–0.91). Mean±SEM progranulin plasma levels were significantly decreased in BPD patients, either Germans or Italians, as compared with controls (89.69±3.97 and 116.14±5.80 ng/ml, respectively, versus 180.81±18.39 ng/ml P<0.001) and were not correlated with age.In conclusion, GRN variability decreases the risk to develop BPD and schizophrenia, and progranulin plasma levels are significantly lower in BPD patients than in controls. Nevertheless, a larger replication analysis would be needed to confirm these preliminary results.  相似文献   

15.
Grapevine leafroll disease (GLD) is caused by a complex of several virus species (grapevine leafroll-associated viruses, GLRaV) in the family Closteroviridae. Because of its increasing importance, it is critical to determine which species of GLRaV is predominant in each region where this disease is occurring. A structured sampling design, utilizing a combination of RT-PCR based testing and sequencing methods, was used to survey GLRaVs in Napa Valley (California, USA) vineyards (n = 36). Of the 216 samples tested for GLRaV-1, -2, -3, -4, -5, and -9, 62% (n = 134) were GLRaV positive. Of the positives, 81% (n = 109) were single infections with GLRaV-3, followed by GLRaV-2 (4%, n = 5), while the remaining samples (15%, n = 20) were mixed infections of GLRaV-3 with GLRaV-1, 2, 4, or 9. Additionally, 468 samples were tested for genetic variants of GLRaV-3, and of the 65% (n = 306) of samples positive for GLRaV-3, 22% were infected with multiple GLRaV-3 variants. Phylogenetic analysis utilizing sequence data from the single infection GLRaV-3 samples produced seven well-supported GLRaV-3 variants, of which three represented 71% of all GLRaV-3 positive samples in Napa Valley. Furthermore, two novel variants, which grouped with a divergent isolate from New Zealand (NZ-1), were identified, and these variants comprised 6% of all positive GLRaV-3 samples. Spatial analyses showed that GLRaV-3a, 3b, and 3c were not homogeneously distributed across Napa Valley. Overall, 86% of all blocks (n = 31) were positive for GLRaVs and 90% of positive blocks (n = 28) had two or more GLRaV-3 variants, suggesting complex disease dynamics that might include multiple insect-mediated introduction events.  相似文献   

16.
The aim of the study was to elucidate the association between the zoonotic pathogen Salmonella and a population of land iguana, Colonophus subcristatus, endemic to Galápagos Islands in Ecuador. We assessed the presence of Salmonella subspecies and serovars and estimated the prevalence of the pathogen in that population. Additionally, we investigated the genetic relatedness among isolates and serovars utilising pulsed field gel electrophoresis (PFGE) on XbaI-digested DNA and determined the antimicrobial susceptibility to a panel of antimicrobials. The study was carried out by sampling cloacal swabs from animals (n = 63) in their natural environment on in the island of Santa Cruz. A high prevalence (62/63, 98.4%) was observed with heterogeneity of Salmonella subspecies and serovars, all known to be associated with reptiles and with reptile-associated salomonellosis in humans. Serotyping revealed 14 different serovars among four Salmonella enterica subspecies: S. enterica subsp. enterica (n = 48), S. enterica subsp. salamae (n = 2), S. enterica subsp. diarizonae (n = 1), and S. enterica subsp. houtenae (n = 7). Four serovars were predominant: S. Poona (n = 18), S. Pomona (n = 10), S. Abaetetuba (n = 8), and S.Newport (n = 5). The S. Poona isolates revealed nine unique XbaI PFGE patterns, with 15 isolates showing a similarity of 70%. Nine S. Pomona isolates had a similarity of 84%. One main cluster with seven (88%) indistinguishable isolates of S. Abaetetuba was observed. All the Salmonella isolates were pan-susceptible to antimicrobials representative of the most relevant therapeutic classes. The high prevalence and absence of clinical signs suggest a natural interaction of the different Salmonella serovars with the host species. The interaction may have been established before any possible exposure of the iguanas and the biocenosis to direct or indirect environmental factors influenced by the use of antimicrobials in agriculture, in human medicine or in veterinary medicine.  相似文献   

17.
Chronic obstructive pulmonary disease (COPD) is a major public health problem with increasing prevalence worldwide. The primary aim of this study was to identify genes and gene ontologies associated with COPD severity. Gene expression profiling was performed on total RNA extracted from lung tissue of 18 former smokers with COPD. Class comparison analysis on mild (n = 9, FEV1 80–110% predicted) and moderate (n = 9, FEV1 50–60% predicted) COPD patients identified 46 differentially expressed genes (p<0.01), of which 14 genes were technically confirmed by quantitative real-time-PCR. Biological replication in an independent test set of 58 lung samples confirmed the altered expression of ten genes with increasing COPD severity, with eight of these genes (NNMT, THBS1, HLA-DPB1, IGHD, ETS2, ELF1, PTGDS and CYRBD1) being differentially expressed by greater than 1.8 fold between mild and moderate COPD, identifying these as candidate determinants of COPD severity. These genes belonged to ontologies potentially implicated in COPD including angiogenesis, cell migration, proliferation and apoptosis. Our secondary aim was to identify gene ontologies common to airway obstruction, indicated by impaired FEV1 and KCO. Using gene ontology enrichment analysis we have identified relevant biological and molecular processes including regulation of cell-matrix adhesion, leukocyte activation, cell and substrate adhesion, cell adhesion, angiogenesis, cell activation that are enriched among genes involved in airflow obstruction. Exploring the functional significance of these genes and their gene ontologies will provide clues to molecular changes involved in severity of COPD, which could be developed as targets for therapy or biomarkers for early diagnosis.  相似文献   

18.

Background

Trypanosomosis caused by Trypanosoma congolense is a major constraint to animal health in sub-Saharan Africa. Unfortunately, the treatment of the disease is impaired by the spread of drug resistance. Resistance to diminazene aceturate (DA) in T. congolense is linked to a mutation modifying the functioning of a P2-type purine-transporter responsible for the uptake of the drug. Our objective was to verify if the mutation was linked or not to drug pressure.

Methodology/Principal Findings

Thirty-four T. congolense isolates sampled from tsetse or wildlife were screened for the DA-resistance linked mutation using DpnII-PCR-RFLP. The results showed 1 sensitive, 12 resistant and 21 mixed DpnII-PCR-RFLP profiles. This suggests that the mutation is present on at least one allele of each of the 33 isolates. For twelve of the isolates, a standard screening method in mice was used by (i) microscopic examination, (ii) trypanosome-specific 18S-PCR after 2 months of observation and (iii) weekly trypanosome-specific 18S-PCR for 8 weeks. The results showed that all mice remained microscopically trypanosome-positive after treatment with 5 mg/kg DA. With 10 and 20 mg/kg, 8.3% (n = 72) and 0% (n = 72) of the mice became parasitologically positive after treatment. However, in these latter groups the trypanosome-specific 18S-PCR indicated a higher degree of trypanosome-positivity, i.e., with a unique test, 51.4% (n = 72) and 38.9% (n = 72) and with the weekly tests 79.2% (n = 24) and 66.7% (n = 24) for 10 and 20 mg/kg respectively.

Conclusion/Significance

The widespread presence of the DA-resistance linked mutation in T. congolense isolated from wildlife suggests that this mutation is favourable to parasite survival and/or its dissemination in the host population independent from the presence of drug. After treatment with DA, those T. congolense isolates cause persisting low parasitaemias even after complete elimination of the drug and with little impact on the host''s health.  相似文献   

19.
M He  T Workalemahu  JE Manson  FB Hu  L Qi 《PloS one》2012,7(7):e40919

Background

High body iron store has been associated with an increased risk of type 2 diabetes (T2D); it remains unknown whether the genetic variants related to body iron status affect T2D risk. We aimed at comprehensively investigating the associations between the genetic variants related to body iron status and the T2D risk.

Methodology/Principal Findings

Six common SNPs related to body iron status from recent genome-wide association (GWA) studies were determined in the Nurses’ Health Study (NHS; 1,467 diabetic cases and 1,754 controls) and the Health Professionals Follow-up Study (HPFS; 1,124, diabetic cases and 1,298 controls). Plasma levels of ferritin, soluble transferrin receptor (sTfR), and transferrin were measured in NHS. Significant associations were observed for loci in TPMRSS6 with sTfR (P = 3.47×10−6), TF with transferrin (P = 0.0002 to 1.72×10−10); and HFE with ferritin (P = 0.017 to 1.6×10−8), sTfR (P = 0.007 to 7.9×10−6), and transferrin (P = 0.006 to 0.0007). The six SNPs together explained 5.7%, 2.7%, and 13.3% of the variation in plasma levels of ferritin, sTfR, and transferrin. After adjustment for the conventional risk factors, the T allele of SNP rs855791 in the TPMRSS6 gene was significantly associated with a 19% decreased risk of T2D (OR = 0.81; 95% CI = 0.66–0.98; P = 0.03) in men. Multiple tests attenuated this significant association to null. No associations were observed in women. SNPs at HFE and TF were not associated with diabetes risk in either sex. Dietary iron intake did not modify the associations of the newly identified loci with diabetes risk.

Conclusions/Significance

The newly identified iron-related SNP rs855791 in TPMRSS6 was nominally associated with a decreased risk of T2D in men but not in women. The apparent differences by gender warrant further study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号