首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arup K. Pathak 《Biopolymers》2015,103(3):148-157
Constant pH molecular dynamics (CpHMD) is a commonly used sampling method, which incorporates the coupling of conformational flexibility and protonation state of a protein during the simulation by using pH as an external parameter. The effects on the structure and stability of a hyperstable variant of staphylococcal nuclease (Δ+PHS) protein of an artificial charge pair buried in its hydrophobic core are investigated by applying both CpHMD and accelerated molecular dynamics coupled with constant pH (CpHaMD) methods. Generalized Born electrostatics is used to model the solvent water. Two sets of starting coordinates of V23E/L36K variant of Δ+PHS, namely, Maestro generated coordinates from Δ+PHS and crystal structure coordinates of the same are considered for detail investigations. On the basis of root mean square displacement (RMSD) and root mean square fluctuations (RMSF) calculations, it is observed that this variant is stable over a wide range of pH. The calculated pKa values for aspartate and glutamate residues based on both CpHMD and CpHaMD simulations are consistent with the reported experimental values (within ± 0.5 to ± 1.5 pH unit), which clearly indicates that the local chemical environment of the carboxylic acids in V23E/L36K variant are comparable to the parent form. The strong salt bridge interaction between the mutated pair, E23/K36 and additional hydrogen bonds formed in the V23E/L36K variant, may help to compensate for the unfavorable self‐energy experienced by the burial of these residues in the hydrophobic core. However, from RMSD, RMSF, and pKa analysis, no significant change in the global conformation of V23E/L36K variant with respect to the parent form, Δ+PHS is noticed. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 148–157, 2015.  相似文献   

2.
Osmolytes increase the thermodynamic conformational stability of proteins, shifting the equilibrium between native and denatured states to favor the native state. However, their effects on conformational equilibria within native-state ensembles of proteins remain controversial. We investigated the effects of sucrose, a model osmolyte, on conformational equilibria and fluctuations within the native-state ensembles of bovine pancreatic ribonuclease A and S and horse heart cytochrome c. In the presence of sucrose, the far- and near-UV circular dichroism spectra of all three native proteins were slightly altered and indicated that the sugar shifted the native-state ensemble toward species with more ordered, compact conformations, without detectable changes in secondary structural contents. Thermodynamic stability of the proteins, as measured by guanidine HCl-induced unfolding, increased in proportion to sucrose concentration. Native-state hydrogen exchange (HX) studies monitored by infrared spectroscopy showed that addition of 1 M sucrose reduced average HX rate constants at all degrees of exchange of the proteins, for which comparison could be made in the presence and absence of sucrose. Sucrose also increased the exchange-resistant core regions of the proteins. A coupling factor analysis relating the free energy of HX to the free energy of unfolding showed that sucrose had greater effects on large-scale than on small-scale fluctuations. These results indicate that the presence of sucrose shifts the conformational equilibria toward the most compact protein species within native-state ensembles, which can be explained by preferential exclusion of sucrose from the protein surface.  相似文献   

3.
Site‐directed spin labeling (SDSL) was used to investigate local structure and conformational exchange in two bacterial outer‐membrane TonB‐dependent transporters, BtuB and FecA. Protecting osmolytes, such as polyethylene glycols (PEGs) are known to modulate a substrate‐dependent conformational equilibrium in the energy coupling motif (Ton box) of BtuB. Here, we demonstrate that a segment that is N‐terminal to the Ton box in BtuB, is in conformational exchange between ordered and disordered states with or without substrate. Protecting osmolytes shift this equilibrium to favor the more ordered, folded state. However, a segment of BtuB that is C‐terminal to the Ton box that is not solvent exposed is insensitive to PEGs. Protecting osmolytes also modulate a conformational equilibrium in the Ton box of FecA, with larger molecular weight PEGs producing the largest shifts in the conformational free energy. These data indicate that solvent‐exposed regions of these transporters undergo conformational exchange and that regions of these transporters that are involved in protein–protein interactions sample multiple conformational substates. The sensitivity to solute provides an explanation for differences seen between two high‐resolution structures of BtuB, which each likely represent one conformation from a subset of states that are normally sampled by the protein. This work also illustrates how SDSL and osmolytes may be used to characterize and quantitate conformational equilibria in membrane proteins.  相似文献   

4.
Giraldo J 《FEBS letters》2004,556(1-3):13-18
Current models of receptor activation are based on either of two basic mechanisms: agonist induction or conformational selection. The importance of one pathway relative to the other is controversial. In this article, the impossibility of distinguishing between the two mechanisms under a thermodynamic approach is shown. The effect of receptor mutation on the constants governing ligand-receptor equilibria is discussed. The two-state model of agonism both in its original formulation (one cycle) and including multiple active states (multiple cycles) is used. Pharmacological equations for the double (two cycles) two-state model are derived. The simulations performed suggest that the double two-state model of agonism can be a useful model for assessing quantitatively the changes in pharmacological activity following receptor mutation.  相似文献   

5.
The 1H NMR spectrum of the tetradeoxynucleotide d(TpCpGpA) was examined as a function of temperature, pH, and concentration. At pH 7 and above the solution conformation for this oligodeoxynucleotide appears to be a mixture of random coil and Watson-Crick duplex. At 25 degrees C, a pH titration of d(TpCpGpA) shows that distinct conformational changes occur as the pH is lowered below 7.0. These conformational changes are reversible upon readjusting the pH to neutrality, indicating the presence of a pH-dependent set of conformational equilibria. At 25 degrees C, the various conformational states in the mixture are in rapid exchange on the NMR time scale. Examination of the titration curve shows the presence of distinct conformational states at pH greater than 7, and between pH 4 and pH 5. At pH less than 4, a third conformational state is present. When the pH titration is repeated at 5 degrees C, the conformational equilibria are in slow exchange on the NMR time scale; distinct signals from each conformational state are observable. The stable conformational state present between pH 4 and pH 5 represents an ordered conformation of d(TpCpGpA) which dissociates to a less ordered structure upon raising the temperature. This ordered conformation does not result from an intramolecular rearrangement, as is shown by by spectra obtained by varying oligodeoxynucleotide concentration at constant pH. The ordered conformation differs from the Watson-Crick helix, as is shown from nuclear Overhauser enhancement experiments, as well as chemical shift data. An ordered conformation for d(TpCpGpA) was previously reported [Reid, D. G., Salisbury, S. A., Brown, T., & Williams, D. H. (1985) Biochemistry 24, 4325-4332].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Ligand binding to proteins is a key process in cell biochemistry. The interaction usually induces modifications in the unfolding thermodynamic parameters of the macromolecule due to the coupling of unfolding and binding equilibria. In addition, these modifications can be attended by changes in protein structure and/or conformational flexibility induced by ligand binding. In this work, we have explored the effect of biotin binding on conformation and dynamic properties of avidin by using infrared spectroscopy including kinetics of hydrogen/deuterium exchange. Our results, along with previously thermodynamic published data, indicate a clear correlation between thermostability and protein compactness. In addition, our results also help to interpret the thermodynamic binding parameters of the exceptionally stable biotin:AVD complex.  相似文献   

7.
H nuclear magnetic resonance spectroscopy has been applied to a study of the conformations of a variety of purine and pyrimidine beta-D-arabinofuranosyl nucleosides. The experimental results, together with data collected from the literature, demonstrated the existence of reasonably good correlations between the coupling constants made it possible to define more accurately, than hitherto possible, the conformational states between which equilibria exist in solution. The equilibrium for the arabinonucleosides differs from that previously established for ribonucleosides; in particular, structural modifications and solvent effects may appreciably modify the conformational states between which equilibria exist. Preliminary measurements on some arabinosides in the syn conformation about the glycosidic bond indicated that these do not conform to the foregoing correlations, and will require separate study. A correlation has also been established between the conformation of the arabinose ring and that of the exocyclic 5'-CH2OH group. For both purine and pyrimidine arabinonucleosides, the conformational state 3E of the arabinose ring coexists to some extent with a gauche-gauche conformation of the exocyclic 5'-CH2OH, as in the case of pyrimidine (but not purine) ribonucleosides. Application of the foregoing to some biological problems is described.  相似文献   

8.
Lactose permease is an integral membrane protein that uses the cell membrane's proton gradient for import of lactose. Based on extensive biochemical data and a substrate-bound crystal structure, intermediates involved in lactose/H(+) co-transport have been suggested. Yet, the transport mechanism, especially the coupling of protonation states of essential residues and protein conformational changes involved in the transport, is not understood. Here we report molecular-dynamics simulations of membrane-embedded lactose permease in different protonation states, both in the presence and in the absence of lactose. The results analyzed in terms of pore diameter, salt-bridge formation, and substrate motion, strongly implicate Glu(269) as one of the main proton translocation sites, whose protonation state controls several key steps of the transport process. A critical ion pair (Glu(269) and Arg(144)) was found to keep the cytoplasmic entrance open, but via a different mechanism than the currently accepted model. After protonation of Glu(269), the salt bridge between Glu(269) and Arg(144) was found to break, and Arg(144) to move away from Glu(269), establishing a new salt bridge with Glu(126); furthermore, neutralization of Glu(269) and the displacement of Arg(144) and consequently of water molecules from the interdomain region was seen to initiate the closing of the cytoplasmic half channel (2.6-4.0 A reduction in diameter in the cytoplasmic constriction region in 10 ns) by allowing hydrophobic surfaces of the N- and C-domains to fuse. Charged Glu(269) was found to strongly bind the lactose permeant, indicating that proton transfer from water or another residue to Glu(269) is a prerequisite for unbinding of lactose from the binding pocket.  相似文献   

9.
N Janes  J W Hsu  E Rubin  T F Taraschi 《Biochemistry》1992,31(39):9467-9472
A generalized, colligative thermodynamic framework is used to treat the action of solutes on cooperative membrane equilibria. Configurational entropy, the randomness imparted by solutes through the partitioning or mixing process, is implicated as the energetic driving force for the action of anesthetics on cooperative membrane equilibria. The equilibria predicted to be most sensitive to solute action--in which the dilute solute causes a perturbation equivalent to a large change in temperature--are (1) low-enthalpy processes that coincide with (2) large partitioning differences between states. The model stresses that solutes do not act at a single site, but on both states in an equilibrium, and that the perturbation is determined by the difference in entropy. Evidence for the thermodynamic framework is obtained from the partitioning behavior of the general anesthetic 1-hexanol into a model lecithin (DMPC; 1,2-dimyristoyl-sn-glycero-3-phosphocholine) membrane as a function of temperature and alcohol concentration. The low-enthalpy equilibrium between the gel (L beta') and ripple states (P beta') (pretransition) is more sensitive to 1-hexanol than the high-enthalpy equilibrium between the ripple (P beta') and fluid bilayer states (L alpha) (main transition). The perturbations of both equilibria are accurately described by the colligative thermodynamic framework. The results suggest that alcohols and anesthetics act through entropy to upset the natural thermal balance that maintains native membrane architecture.  相似文献   

10.
The resonance Raman spectra of met-, deoxy-, and (carbonmonoxy)myoglobin (MbCO) are studied as a function of amino acid replacement at the distal histidine-E7 position. The synthetic wild type is found to be spectroscopically identical with the native material. The methionine and glycine replacements do not affect the met or deoxy spectra but do lead to distinct changes in the nu Fe-CO region of the MbCO spectrum. The native MbCO displays a pH-dependent population redistribution of the nu Fe-CO modes, while the analogous population in the mutant systems is found to be pH independent. This indicates that histidine-E7 is the titratable group in native MbCO. Moreover, the pH dependence of the population dynamics is found to be inconsistent with a simple two-state Henderson-Hasselbalch analysis. Instead, we suggest a four-state model involving the coupling of histidine protonation and conformational change. Within this model, the pK of the distal histidine is found to be 6.0 in the "open" configuration and 3.8 in the "closed" conformation. This corresponds to a 3 kcal/mol destabilization of the positively charged distal histidine within the hydrophobic pocket and suggests how protonation can lead to a larger population of the "open" conformation. At pH 7, the pocket is found to be "open" approximately 3% of the time. Further work, involving both IR and Raman measurements, allows the electron-nuclear coupling strengths of the various nu Fe-CO and nu C-O Raman modes to be determined. The slowly rebinding conformational state, corresponding to nu Fe-CO = 518 cm-1 (nu C-O = 1932 cm-1), displays unusually weak coupling of the Fe-CO mode to the Soret transition. Studies of the nu Fe-CO region as a function of temperature reveal that the equilibria between the conformational states are quenched in both the native and glycine mutant below the freezing point of the solvent. Unusual line narrowing of the nu Fe-CO modes at the phase transition is also observed in all samples studied. This line narrowing stands in marked contrast to the other heme Raman modes and suggests that Fe-CO librational motion and/or distal pocket vibrational (or conformational) excitations are involved in the line broadening at room temperature.  相似文献   

11.
Yead Jewel  Prashanta Dutta  Jin Liu 《Proteins》2016,84(8):1067-1074
During lactose/H+ symport, the Escherichia coli lactose permease (LacY) undergoes a series of global conformational transitions between inward‐facing (open to cytoplasmic side) and outward‐facing (open to periplasmic side) states. However, the exact local interactions and molecular mechanisms dictating those large‐scale structural changes are not well understood. All‐atom molecular dynamics simulations have been performed to investigate the molecular interactions involved in conformational transitions of LacY, but the simulations can only explore early or partial global structural changes because of the computational limits (< 100 ns). In this work, we implement a hybrid force field that couples the united‐atom protein models with the coarse‐grained MARTINI water/lipid, to investigate the proton‐dependent dynamics and conformational changes of LacY. The effects of the protonation states on two key glutamate residues (Glu325 and Glu269) have been studied. Our results on the salt‐bridge dynamics agreed with all‐atom simulations at early short time period, validating our simulations. From our microsecond simulations, we were able to observe the complete transition from inward‐facing to outward‐facing conformations of LacY. Our results showed that all helices have participated during the global conformational transitions and helical movements of LacY. The inter‐helical distances measured in our simulations were consistent with the double electron‐electron resonance experiments at both cytoplasmic and periplasmic sides. Our simulations indicated that the deprotonation of Glu325 induced the opening of the periplasmics side and partial closure of the cytoplasmic side of LacY, while protonation of the Glu269 caused a stable cross‐domain salt‐bridge (Glu130‐Arg344) and completely closed the cytoplasmic side. Proteins 2016; 84:1067–1074. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Antosiewicz JM 《Biopolymers》2008,89(4):262-269
All proteins, nucleic acids, and other biomolecules contain residues capable of exchanging protons with their environment. These proton transfer phenomena lead to pH sensitivity of many molecular processes underlying biological phenomena. In the course of biological evolution, Nature has invented some mechanisms to use pH gradients to regulate biomolecular processes inside cells or in interstitial fluids. Therefore, an ability to model protonation equilibria in molecular systems accurately would be of enormous value for our understanding of biological processes and for possible rational influence on them, like in developing pH dependent drugs to treat particular diseases. This work presents a derivation, by thermodynamic and statistical mechanical methods, of an expression for the free energy of a complex molecular system at arbitrary ionization state of its titratable residues. This constitutes one of the elements of modeling protonation equilibria. Starting from a consideration of a simple acid-base equilibrium of a model compound with a single tritratable group, we arrive at an expression which is of general validity for complex systems. The only approximation used in this derivation is the postulating that the interaction energy between any pair of titratable sites does not depend on the protonation states of all the remaining ionizable groups.  相似文献   

13.
Serum transferrin (sTf) carries iron in blood serum and delivers it into cells by receptor-mediated endocytosis. The protein can also bind other metals, including aluminum. The crystal structures of the metal-free and metal-loaded protein indicate that the metal release process involves an opening of the protein. In this process, Lys206 and Lys296 lying in the proximity of each other form the dilysine pair or, so-called, dilysine trigger. It was suggested that the conformational change takes place due to variations of the protonation state of the dilysine trigger at the acidic endosomal pH. In 2003, Rinaldo and Field (Biophys. J. 85, 3485-3501) proposed that the dilysine trigger alone can not explain the opening and that the protonation of Tyr188 is required to prompt the conformational change. However, no evidence was supplied to support this hypothesis. Here, we present several 60 ns molecular dynamics simulations considering various protonation states to investigate the complexes formed by sTf with Fe(III) and Al(III). The calculations demonstrate that only in those systems where Tyr188 has been protonated does the protein undergo the conformational change and that the dilysine trigger alone does not lead to the opening. The simulations also indicate that the metal release process is a stepwise mechanism, where the hinge-bending motion is followed by the hinge-twisting step. Therefore, the study demonstrates for the first time that the protonation of Tyr188 is required for the release of metal from the metal loaded sTf and provides valuable information about the whole process.  相似文献   

14.
Using Fourier transform infrared (FTIR) difference spectroscopy, we have studied the impact of sites and extent of methylation of the retinal polyene with respect to position and thermodynamic parameters of the conformational equilibrium between the Meta I and Meta II photoproducts of rhodopsin. Deletion of methyl groups to form 9-demethyl and 13-demethyl analogues, as well as addition of a methyl group at C10 or C12, shifted the Meta I/Meta II equilibrium toward Meta I, such that the retinal analogues behaved like partial agonists. This equilibrium shift resulted from an apparent reduction of the entropy gain of the transition of up to 65%, which was only partially offset by a concomitant reduction of the enthalpy increase. The analogues produced Meta II photoproducts with relatively small alterations, while their Meta I states were significantly altered, which accounted for the aberrant transitions to Meta II. Addition of a methyl group at C14 influenced the thermodynamic parameters but had little impact on the position of the Meta I/Meta II equilibrium. Neutralization of the residue 134 in the E134Q opsin mutant increased the Meta II content of the 13-demethyl analogue, but not of the 9-demethyl analogue, indicating a severe impairment of the allosteric coupling between the conserved cytoplasmic ERY motif involved in proton uptake and the Schiff base/Glu 113 microdomain in the 9-demethyl analogue. The 9-methyl group appears therefore essential for the correct positioning of retinal to link protonation of the cytoplasmic motif with protonation of Glu 113 during receptor activation.  相似文献   

15.
A variety of coarse-grained (CG) models exists for simulation of proteins. An outstanding problem is the construction of a CG model with physically accurate conformational energetics rivaling all-atom force fields. In the present work, atomistic simulations of peptide folding and aggregation equilibria are force-matched using multiscale coarse-graining to develop and test a CG interaction potential of general utility for the simulation of proteins of arbitrary sequence. The reduced representation relies on multiple interaction sites to maintain the anisotropic packing and polarity of individual sidechains. CG energy landscapes computed from replica exchange simulations of the folding of Trpzip, Trp-cage and adenylate kinase resemble those of other reduced representations; non-native structures are observed with energies similar to those of the native state. The artifactual stabilization of misfolded states implies that non-native interactions play a deciding role in deviations from ideal funnel-like cooperative folding. The role of surface tension, backbone hydrogen bonding and the smooth pairwise CG landscape is discussed. Ab initio folding aside, the improved treatment of sidechain rotamers results in stability of the native state in constant temperature simulations of Trpzip, Trp-cage, and the open to closed conformational transition of adenylate kinase, illustrating the potential value of the CG force field for simulating protein complexes and transitions between well-defined structural states.  相似文献   

16.
The small multidrug resistance transporter EmrE is a homodimer that uses energy provided by the proton motive force to drive the efflux of drug substrates. The pKa values of its “active-site” residues—glutamate 14 (Glu14) from each subunit—must be poised around physiological pH values to efficiently couple proton import to drug export in vivo. To assess the protonation of EmrE, pH titrations were conducted with 1H-15N TROSY-HSQC nuclear magnetic resonance (NMR) spectra. Analysis of these spectra indicates that the Glu14 residues have asymmetric pKa values of 7.0 ± 0.1 and 8.2 ± 0.3 at 45°C and 6.8 ± 0.1 and 8.5 ± 0.2 at 25°C. These pKa values are substantially increased compared with typical pKa values for solvent-exposed glutamates but are within the range of published Glu14 pKa values inferred from the pH dependence of substrate binding and transport assays. The active-site mutant, E14D-EmrE, has pKa values below the physiological pH range, consistent with its impaired transport activity. The NMR spectra demonstrate that the protonation states of the active-site Glu14 residues determine both the global structure and the rate of conformational exchange between inward- and outward-facing EmrE. Thus, the pKa values of the asymmetric active-site Glu14 residues are key for proper coupling of proton import to multidrug efflux. However, the results raise new questions regarding the coupling mechanism because they show that EmrE exists in a mixture of protonation states near neutral pH and can interconvert between inward- and outward-facing forms in multiple different protonation states.  相似文献   

17.
18.
Coupled equilibria play important roles in controlling information flow in biochemical systems, including allosteric molecules and multidomain proteins. In the simplest case, two equilibria are coupled to produce four interconverting states. In this study, we assessed the feasibility of determining the degree of coupling between two equilibria in a four-state system via relaxation dispersion measurements. A major bottleneck in this effort is the lack of efficient approaches to data analysis. To this end, we designed a strategy to efficiently evaluate the smoothness of the target function surface (TFS). Using this approach, we found that the TFS is very rough when fitting benchmark CPMG data to all adjustable variables of the four-state equilibria. After constraining a portion of the adjustable variables, which can often be achieved through independent biochemical manipulation of the system, the smoothness of TFS improves dramatically, although it is still insufficient to pinpoint the solution. The four-state equilibria can be finally solved with further incorporation of independent chemical shift information that is readily available. We also used Monte Carlo simulations to evaluate how well each adjustable parameter can be determined in a large kinetic and thermodynamic parameter space and how much improvement can be achieved in defining the parameters through additional measurements. The results show that in favorable conditions the combination of relaxation dispersion and biochemical manipulation allow the four-state equilibrium to be parameterized, and thus coupling strength between two processes to be determined.  相似文献   

19.
A thorough study of the acid-base behavior of the four histidines and the other titratable residues of the structured domain of human prion protein (125-228) is presented. By using multi-tautomer electrostatic calculations, average titration curves have been built for all titratable residues, using the whole bundles of NMR structures determined at pH 4.5 and 7.0. According to our results, (1) only histidine residues are likely to be involved in the first steps of the pH-driven conformational transition of prion protein; (2) the pK(a)'s of His140 and His177 are approximately 7.0, whereas those of His155 and His187 are < 5.5. 10-ns long molecular dynamics simulations have been performed on five different models, corresponding to the most significant combinations of histidine protonation states. A critical comparison between the available NMR structures and our computational results (1) confirms that His155 and His187 are the residues whose protonation is involved in the conformational rearrangement of huPrP in mildly acidic condition, and (2) shows how their protonation leads to the destructuration of the C-terminal part of HB and to the loss of the last turn of HA that represent the crucial microscopic steps of the rearrangement.  相似文献   

20.
Vogel R  Siebert F 《Biochemistry》2002,41(11):3529-3535
We studied the influence of salts on the pH-dependent conformational equilibria between the active and the inactive photoproduct states of rhodopsin, Meta II and Meta I, respectively, and between the active and inactive conformations of the apoprotein opsin. In both equilibria, the active species is favored in the presence of medium to high concentration of salt. The ion selectivity for the Meta I/Meta II equilibrium is particularly pronounced for the anions and follows the series trichloroacetate > thiocyanate > iodide > bromide > sulfate > chloride > acetate. The Hill coefficient of this salt-induced transition is close to 2.0. Both ion selectivity and Hill coefficient suggest that the transition is mainly regulated by ion binding to two specific charged binding sites in the protein with smaller contributions being due to the Hofmeister effect. We propose that these putative ion binding sites are identical to those sites that are titrated in the corresponding pH-dependent conformational transition. They presumably function as ionic locks, which keep the receptor in an inactive conformation, and which may be disrupted either by pH-dependent protonation or by salt-dependent ion binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号