首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】地衣芽孢杆菌MY75菌株的几丁质酶基因的异源表达,并对表达蛋白的特性进行研究。【方法】制备MY75菌株培养上清粗蛋白,利用酶谱分析确定具有几丁质酶活的蛋白分子量。将该蛋白进行飞行时间质谱分析,确定其部分氨基酸序列,设计PCR引物对MY75菌株的几丁质酶基因进行克隆及异源表达。对表达蛋白的最适反应温度及pH,温度耐受性及金属离子对酶活力的影响等特性进行了研究,并测定了表达蛋白对真菌孢子萌发的抑制活性和对甜菜夜蛾幼虫的杀虫增效作用。【结果】酶谱分析证明MY75菌株培养上清液中仅含有一种55kDa的几丁质酶。将该编码基因chiMY克隆及序列分析后发现,基因长度为1797bp,编码599个氨基酸。在大肠杆菌中异源表达的几丁质酶ChiMY蛋白的分子量为67kDa。质谱分析证明,55kDa蛋白与67kDa蛋白序列相同。ChiMY最适pH和最适温度分别为7.0和50°C,为中性几丁质酶。Li+,Na+,和Mg2+离子对表达蛋白的酶活力具有促进作用,Mn2+,Cr3+,Zn2+和Ag+离子则能显著抑制酶活力,Cu2+和Fe3+离子完全抑制酶活性。生物测定的结果显示,异源表达的MY75几丁质酶能够抑制小麦赤霉及黑曲霉的孢子萌发,并且对苏云金芽孢杆菌的杀虫活力具有增效作用。【结论】地衣芽孢杆菌MY75菌株中仅有一种55kDa几丁质酶,其编码基因能够在大肠杆菌中大量表达,表达蛋白分子量与野生型蛋白之间有显著差异,由此证明MY75菌株中存在着几丁质酶的剪切加工过程。明确了地衣芽孢杆菌几丁质酶ChiMY具有抑制真菌活性及杀虫增效作用。上述全部研究结论在国内首次报道。  相似文献   

2.
A fragment of Bacillus subtilis DNA coding for xylose isomerase and xylulokinase was isolated from a BamHI restriction pool by complementation of an isomerase-defective Escherichia coli strain. The spontaneous insertion of IS5, which occurred during the very slow growth of the E. coli xyl- cells on xylose, allowed the expression of the cloned Bacillus genes in E. coli. Without IS5 insertion, the xylose genes were inactive in E. coli. Deletion experiments indicated that the control of the expression resides within a 270-bp long region at the right end of IS5. Deletion of this region led to a loss of expression, which could be restored by insertion of the lacUV5 promoter fragment at the deletion site. Sequence analysis showed that the site of IS5 insertion is 195 bp upstream from the putative ATG initiation codon of the xylose isomerase structural gene. This ATG is preceded by a ribosome binding sequence and two hexamers also found in promoter regions of other Bacillus genes. Deletion and mutagenesis analysis led to a preliminary map of the Bacillus xylose operon.  相似文献   

3.
The set of genes that determine the expression of the enzymes involved in chitin degradation by Serratia liquefaciens was cloned. The role of each gene was investigated, and for the first time regulatory genes were identified in this system. The chiA and chiB genes coded for separate chitinase activities. The chiC region coded for a chitobiase activity, but it was not formally separated from chiB. Transposon mutagenesis and deletion analysis identified a region, chiD, whose absence led to higher expression of chiA, chiB, and chiC. chiD may therefore be a gene that codes for a repressor. Loss of function of another adjacent region, chiE, prevented induction unless a chiE+ strain was a near neighbor, suggesting that this gene may code for a protein that is involved in the synthesis of the inducer. chiB, chiC, chiD, and chiE are closely linked, while chiA is in a separate location on the chromosome.  相似文献   

4.
5.
几丁质酶在降解几丁质的过程中起着重要作用,目前人们已从不同微生物体中分离并克隆出了多种几丁质酶基因。实验以pET-22b( )为载体,利用从粘质沙雷氏菌(Serratia marcescens)克隆出的chiB基因,构建出原核生物表达载体pET-chiB。通过表达载体pET-chiB的诱导表达,实验结果显示该基因表达的蛋白为可溶性蛋白,其分子量约为52 kD。利用不同参数包括时间、IPTG浓度和温度诱导表达载体pET-chiB表达并对表达产物进行SDS-PAGE分析,结果显示其诱导表达的最佳参数分别为4 h,0.5 mmol/L和25℃。这些结果为几丁质酶基因的进一步研究和几丁质酶工程菌生产奠定了良好的工作基础。  相似文献   

6.
7.
AIMS: The present work aims to study a new chitinase from Bacillus thuringiensis subsp. kurstaki. METHODS AND RESULTS: BUPM255 is a chitinase-producing strain of B. thuringiensis, characterized by its high chitinolytic and antifungal activities. The cloning and sequencing of the corresponding gene named chi255 showed an open reading frame of 2031 bp, encoding a 676 amino acid residue protein. Both nucleotide and amino acid sequences similarity analyses revealed that the chi255 is a new chitinase gene, presenting several differences from the published chi genes of B. thuringiensis. The identification of chitin hydrolysis products resulting from the activity, exhibited by Chi255 through heterologous expression in Escherichia coli revealed that this enzyme is a chitobiosidase. CONCLUSIONS: Another chitinase named Chi255 belonging to chitobiosidase class was evidenced in B. thuringiensis subsp. kurstaki and was shown to present several differences in its amino acid sequence with those of published ones. The functionality of Chi255 was proved by the heterologous expression of chi255 in E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of the sequence of chi255 to the few sequenced B. thuringiensis chi genes might contribute to a better investigation of the chitinase 'structure-function' relation.  相似文献   

8.
Bt几丁质酶的基础表达及诱导合成的多态现象   总被引:1,自引:0,他引:1  
多数微生物可以产生几丁质酶。一般认为几丁质酶基因表达受几丁质的诱导和葡萄糖抑制。但是苏云金芽胞杆菌Bacillus thuringiensis(简称Bt)几丁质酶的诱导表达方式是否与其他微生物相同,至今尚无定论。采用DNS法检测77株Bt在有或无诱导物培养基中的几丁质酶活力。研究了葡萄糖对4株不同表达类型菌株酶活力的影响,以及葡萄糖抑制与几丁质诱导之间的关系。研究发现在无几丁质诱导条件下,全部试验菌株都可以产生几丁质酶,保持一定量的基础表达,说明Bt能组成型合成几丁质酶,不需要诱导。添加诱导物之后,31株菌的酶活力没有任何变化,44株菌有不同程度的提高,但其中绝大部分诱导特性并不典型,酶活力提高不显著。许多Bt菌株几丁质酶表达兼具组成型和诱导型的特点。葡萄糖能够抑制几丁质的诱导作用,但是不能完全抑制Bt菌株几丁质酶的基础表达。比较组成型和诱导型菌株的几丁质酶基因chiA、chiB调节区域核苷酸序列,发现仅存在个别碱基的差异。  相似文献   

9.
以苏云金芽孢杆菌科默尔亚种15A3菌株基因组DNA为模版,用touchdown PCR方法扩增几丁质酶ChiA和ChiB的全基因序列(GenBank登录号:EF103273和DQ512474)。将PCR产物连接pUCm-T克隆载体,获得重组质粒pUCm-chiA和pUCm-chiB,分别转化E.coliXL-Blue。克隆的几丁质酶基因可以利用本身的启动子异源表达各自的蛋白,不需要几丁质作为诱导物。表达的几丁质酶能够分泌到胞外。证明15A3菌株可组成型表达2种几丁质酶。经核苷酸及氨基酸序列分析证明,chiA基因全长1426bp,含有343bp的上游非编码区和1083bp的ORF,编码360个氨基酸。推测成熟蛋白分子量为36kD,只有一个几丁质酶催化域。chiB基因全长2279bp,含有248bp的上游非编码区和2031bp的ORF,编码676个氨基酸。推测成熟蛋白分子量约为70.6kD,具有三个功能域。核苷酸序列分析显示chiAchiB的启动子所处的位置及转录起始碱基都不相同,-35区相同,而-10区有两个碱基不同,SD序列也不完全一致。  相似文献   

10.
11.
Under carbon starvation, Aspergillus nidulans produced a fungal/bacterial type chitinase, ChiB. The chiB gene was cloned and subcloned into pJC40 expression vector containing a 10XHis fusion tag, and the ChiB protein was expressed heterologously in Escherichia coli. Recombinant and native ChiB enzymes shared the same optimal pH ranges and showed similar substrate specificities with endo-acting cleavage patterns.  相似文献   

12.
A chitinase producing Bacillus subtilis CHU26 was isolated from Taiwan potato field. This strain exhibited a strong extra-cellular chitinase activity on the colloidal chitin containing agar plate, and showed a potential inhibit activity against phytopathogen, Rhizoctonia solani. The gene encoding chitinase (chi18) was cloned from the constructed B. subtilis CHU26 genomic DNA library. The chi18 consisted of an open reading frame of 1791 nucleotides and encodes 595 amino acids with a deduced molecular weight of 64kDa, next to a promoter region containing a 9 base pair direct repeat sequence (ATTGATGAA). The deduced amino acid sequence of the chitinase from Bacillus subtilis CHU26 exhibits 62% and 81% similarity to those from B. circulans WL-12 and B. licheniformis, respectively. Subcloned chi18 into vector pGEM3Z and pYEP352 to construct recombinant plasmid pGCHI18 and pYCHI18, respectively, chitinase activity could be observed on the colloidal chitin agar plate from recombinant plasmid containing Escherichia coli transformant. Cell-free culture broth of pYCHI18 containing E. coli transformant decreased R. solani pathogenic activity more than 90% in the antagonistic test on the radish seedlings (Raphanus sativus Linn.).  相似文献   

13.
苏云金芽孢杆菌chiA,chiB全基因的克隆、表达及其序列分析   总被引:4,自引:1,他引:4  
以苏云金芽孢杆菌科默尔亚种15A3菌株基因组DNA为模版,用touchdown PCR方法扩增几丁质酶ChiA和ChiB的全基因序列(GenBank登录号:EF103273和DQ512474)。将PCR产物连接pUCm-T克隆载体,获得重组质粒pUCm-chiA和pUCm-chiB,分别转化E.coliXL-Blue。克隆的几丁质酶基因可以利用本身的启动子异源表达各自的蛋白,不需要几丁质作为诱导物。表达的几丁质酶能够分泌到胞外。证明15A3菌株可组成型表达2种几丁质酶。经核苷酸及氨基酸序列分析证明,chiA基因全长1426bp,含有343bp的上游非编码区和1083bp的ORF,编码360个氨基酸。推测成熟蛋白分子量为36kD,只有一个几丁质酶催化域。chiB基因全长2279bp,含有248bp的上游非编码区和2031bp的ORF,编码676个氨基酸。推测成熟蛋白分子量约为70.6kD,具有三个功能域。核苷酸序列分析显示chiA和chiB的启动子所处的位置及转录起始碱基都不相同,-35区相同,而-10区有两个碱基不同,SD序列也不完全一致。  相似文献   

14.
利用TaKaRaLAPCRTM试剂盒扩增枯草芽孢杆菌 931 5 1耐盐突变株proA基因的未知下游序列。根据测序结果 ,设计引物 ,克隆出发菌株和突变株全长proBA基因。将出发菌株和突变株的proBA基因分别转化大肠杆菌JM83(proBA- ) ,均能够与其功能互补。SDS PAGE分析其表达产物 ,有两条分子量分别约为 4 0kD和 4 5kD的新蛋白带出现。测定 4种转化子 (分别含有出发菌株和突变株proB基因的大肠杆菌 1 1 2 5 2转化子及proBA基因的大肠杆菌JM83转化子 )的耐盐能力。发现含有突变株proB或proBA基因转化子的耐盐能力 ,均比相应的含有出发菌株proB或proBA基因的转化子高。另外含有出发菌株和突变株的proBA基因转化子的耐盐能力 ,也均比相应的仅含proB基因的转化子高 ,表明枯草芽孢杆菌的ProA比大肠杆菌的ProA更为有效。测定所有JM83转化子胞内自由脯氨酸 ,发现其含量随盐浓度的上升而提高 ,其中含突变菌株proBA基因的转化子提高更为显著  相似文献   

15.
16.
17.
Three strains of Xenorhabdus nematophilus showed insecticidal activity when fed to Pieris brassicae (cabbage white butterfly) larvae. From one of these strains (X. nematophilus PMFI296) a cosmid genome library was prepared in Escherichia coli and screened for oral insecticidal activity. Two overlapping cosmid clones were shown to encode insecticidal proteins, which had activity when expressed in E. coli (50% lethal concentration [LC(50)] of 2 to 6 microg of total protein/g of diet). The complete sequence of one cosmid (cHRIM1) was obtained. On cHRIM1, five genes (xptA1, -A2, -B1, -C1, and -D1) showed homology with up to 49% identity to insecticidal toxins identified in Photorhabdus luminescens, and also a smaller gene (chi) showed homology to a putative chitinase gene (38% identity). Transposon mutagenesis of the cosmid insert indicated that the genes xptA2, xptD1, and chi were not important for the expression of insecticidal activity toward P. brassicae. One gene (xptA1) was found to be central for the expression of activity, and the genes xptB1 and xptC1 were needed for full activity. The location of these genes together on the chromosome and therefore present on a single cosmid insert probably accounted for the detection of insecticidal activity in this E. coli clone. Although multiple genes may be needed for full activity, E. coli cells expressing the xptA1 gene from the bacteriophage lambda P(L) promoter were shown to have insecticidal activity (LC(50) of 112 microg of total protein/g of diet). This is contrary to the toxin genes identified in P. luminescens, which were not insecticidal when expressed individually in E. coli. High-level gene expression and the use of a sensitive insect may have aided in the detection of insecticidal activity in the E. coli clone expressing xptA1. The location of these toxin genes and the chitinase gene and the presence of mobile elements (insertion sequence) and tRNA genes on cHRIM1 indicates that this region of DNA represents a pathogenicity island on the genome of X. nematophilus PMFI296.  相似文献   

18.
The dnaA genes of Salmonella typhimurium and Serratia marcescens, which complemented the temperature-sensitive dnaA46 mutation of Escherichia coli, were cloned and sequenced. They were very homologous to the dnaA gene of E. coli. The 63 N-terminal amino acids and the 333 C-terminal amino acids of the corresponding DnaA proteins were identical. The region in between, corresponding to 71 amino acids in E. coli, exhibited a number of changes. This variable region coincided with a nonhomologous region found in the comparison of E. coli dnaA and Bacillus subtilis "dnaA" genes. The regions upstream of the genes were also homologous. The ribosome-binding area, one of the promoters, the DnaA protein-binding site, and many GATC sites (Dam methyltransferase-recognition sequence) were conserved in these three enteric bacteria.  相似文献   

19.
20.
The gene encoding the Lon protease of Erwinia amylovora has been cloned by complementation of an Escherichia coli lon mutant. Analysis of the determined nucleotide sequence of the lon gene revealed extensive homology to the nucleotide sequences of cloned lon genes from E. coli, Myxococcus xanthus, and Bacillus brevis. The predicted amino acid sequence of the E. amylovora Lon protease was 94, 59, and 54% identical to the predicted amino acid sequences of the Lon proteases of E. coli, M. xanthus, and B. brevis, respectively. The -10 and -35 promoter regions of the cloned lon gene had extensive homology to the respective consensus sequences of E. coli heat shock promoters. Promoter mapping of the lon gene located the start site 7 bases downstream of the -10 region. Cloning of the lon promoter upstream of a cat reporter gene demonstrated that expression of the E. amylovora lon gene was inducible by a heat shock. This is the first demonstration of a heat shock-regulated gene in E. amylovora. Site-directed mutagenesis of the -10 region of the lon promoter confirmed that the heat shock expression of the E. amylovora lon gene may be mediated by a sigma 32-like factor. Insertional inactivation of the E. amylovora chromosomal lon gene confirmed that the lon gene was not essential for either vegetative growth or infection of apple seedlings. E. amylovora lon mutants had increased sensitivity to UV irradiation and elevated levels of extracellular polysaccharide, suggesting comparable roles for the Lon proteases in both E. amylovora and E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号