共查询到8条相似文献,搜索用时 15 毫秒
1.
2.
The acquisition of immunity following subclinical or resolved infection with the intracellular parasite Leishmania donovani suggests that vaccination could prevent visceral leishmaniasis. The characteristics and in vitro stimulating capability of the recombinant proteins expressed by previously identified clones on the basis of their capacity to stimulate an indigenously established Leishmania-specific cell line leading to high level of IFN-γ suggested these to be potential candidates for immunoprophylaxis against leishmaniasis. In this study, we investigated the protective efficacy of purified recombinant proteins from two of the identified cDNA clones along with the adjuvant MPL, in a hamster model of experimental leishmaniasis. We demonstrate here that the immunization of animals with one of the recombinant proteins (rF14) having 97% similarity to C1 clone of L. chagasi ribosomal protein gene P0 (rLiP0) along with MPL provided partial protection against the virulent challenge of L. donovani. The absence of antigen-specific lymphoproliferative responses in these immunized animals may be responsible for the lack of complete and long-lasting protection. 相似文献
3.
Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis 总被引:2,自引:0,他引:2
Vaccination against visceral leishmaniasis has received limited attention compared with cutaneous leishmaniasis, although the need for an effective vaccine against visceral leishmaniasis is pressing. In this study, we demonstrate for the first time that a recombinant stage-specific hydrophilic surface protein of Leishmania donovani, recombinant hydrophilic acylated surface protein B1 (HASPB1), is able to confer protection against experimental challenge. Protection induced by rHASPB1 does not require adjuvant and, unlike soluble Leishmania Ag + IL-12, extends to the control of parasite burden in the spleen, an organ in which parasites usually persist and are refractory to a broad range of immunological and chemotherapeutic interventions. Both immunohistochemistry (for IL-12p40) and enzyme-linked immunospot assay (for IL-12p70) indicate that immunization with rHASPB1 results in IL-12 production by dendritic cells, although an analysis of Ab isotype responses to rHASPB1 suggests that this response is not sufficient in magnitude to induce a polarized Th1 response. Although both vaccinated and control-infected mice have equivalent frequencies of rHASPB1-specific CD4(+) T cells producing IFN-gamma, vaccine-induced protection correlates with the presence of rHASPB1-specific, IFN-gamma-producing CD8(+) T cells. Thus, we have identified a novel vaccine candidate Ag for visceral leishmaniasis, which appears to operate via a mechanism similar to that previously associated with DNA vaccination. 相似文献
4.
《Cytokine》2016
Currently the main concerns regarding control of visceral leishmaniasis (VL) caused by L. donovani are immunosuppression, relating toxicity of anti-leishmanial drug and little development in appropriate vaccine and vector (P. argentipes) control. Reports available from ex-vivo studies reflect significance of vector salivary gland homogenate (SGH) in reverting immunosuppression of infected VL subjects and as such the immunogenic nature of SGH can be a strategy to modulate immune system and anti-leishmanial function to enable immune response to control the disease. Several related studies also identified a better utility of vector anti-saliva antibodies in achieving such effects by an adoptive transfer approach instead of direct stimulation with SGH protein. However, conclusive evidences on VL cases are far beyond satisfactory to suggest role of SGH into modulation of host immune response in VL subjects in India. This study was under taken to make comparison on change in cytokines (TH1 and TH2) response pattern and anti-leishmanial macrophage (Mϕ) function following stimulation of their PBMCS with SGH protein derived from P. argentipes sand fly vector for VL or anti SGH antibodies raised in rabbit.This study reports for the first time that L. donovani sensitized healthy subject demonstrates an up-regulated Interferon-γ (TH1) and down regulate Interleukin-10 (TH2) production following stimulation of their PBMCs by P. argentipes anti-saliva antibodies accompanied with an improvement in anti-leishmanial Mϕ function for nitric oxide (NO) production. Subsequent experiments suggest that P. argentipes based anti-SGH antibodies when used to stimulate LD infected PBMCs in healthy subjects resulted in better clearance of Leishmania amastigotes load compare to SGH protein. Possibly the immunogenic components of anti-saliva an antibody maintains the level of protective cytokine (INF-γ) and seems to restrict the infection by host protection by vector saliva. 相似文献
5.
Bimal S Sinha S Singh SK Narayan S Kumar V Verma N Ranjan A Sinha PK Das VN Pandey K Kar SK Das P 《Experimental parasitology》2012,131(3):274-282
We have evaluated the effect of combining CD2 with conventional antimonial (sb) therapy in protection in BALB/c mice infected with either drug sensitive or resistant strain of Leishmania donovani with 3×10(7) parasites via-intra-cardiac route. Mice were treated with anti CD2 adjunct SAG sub-cutaneously twice a week for 4 weeks. Assessment for measurement of weight, spleen size, anti-Leishmania antibody titer, T cell and anti-leishmanial macrophage function was carried out day 0, 10, 22 and 34 post treatments. The combination therapy was shown boosting significant proportion of T cells to express CD25 compared to SAG monotherapy. Although, the level of IFN-γ was not statistically different between combination vs monotherapy (p=0.298) but CD2 treatment even alone significantly influenced IFN-γ production than either SAG treatment (p=0.045) or with CD2 adjunct SAG treatment (p=0.005) in Ld-S strain as well as in Ld-R strain. The influence of CD2 adjunct treatment was also documented in anti-leishmanial functions in macrophages. As shown, the super-oxide generation began enhancing very early on day 10 after SAG treatment with CD2 during which SAG action was at minimum. Interestingly, the super-oxide generation ability remained intact in macrophage after treatment with immuno-chemotherapy even in mice infected with Leishmania resistant strain. Unlike SAG treatment, treatment of SAG with CD2 also led to production of nitric oxide and TNF-α, resulting in resulting in most effective clearance of L. donovani from infected macrophages. Our results indicate that CD2, which can boost up a protective Th1 response, might also be beneficial to enable SAG to induce Macrophages to produce Leishmanicidal molecules and hence control the infection in clinical situation like Kala-azar. Drug resistance is the major impedance for disease control but the encouraging results obtained after infecting mice with resistant strain of the parasite strongly imply that this drug can be effective even in treating resistant cases of Kala-azar. 相似文献
6.
Basu R Bhaumik S Basu JM Naskar K De T Roy S 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(11):7160-7171
The emergence of an increasing number of Leishmania donovani strains resistant to pentavalent antimonials (SbV), the first line of treatment for visceral leishmaniasis worldwide, accounts for decreasing efficacy of chemotherapeutic interventions. A kinetoplastid membrane protein-11 (KMP-11)-encoding construct protected extremely susceptible golden hamsters from both pentavalent antimony responsive (AG83) and antimony resistant (GE1F8R) virulent L. donovani challenge. All the KMP-11 DNA vaccinated hamsters continued to survive beyond 8 mo postinfection, with the majority showing sterile protection. Vaccinated hamsters showed reversal of T cell anergy with functional IL-2 generation along with vigorous specific anti-KMP-11 CTL-like response. Cytokines known to influence Th1- and Th2-like immune responses hinted toward a complex immune modulation in the presence of a mixed Th1/Th2 response in conferring protection against visceral leishmaniasis. KMP-11 DNA vaccinated hamsters were protected by a surge in IFN-gamma, TNF-alpha, and IL-12 levels along with extreme down-regulation of IL-10. Surprisingly the prototype candidature of IL-4, known as a disease exacerbating cytokine, was found to have a positive correlation to protection. Contrary to some previous reports, inducible NO synthase was actively synthesized by macrophages of the protected hamsters with concomitant high levels of NO production. This is the first report of a vaccine conferring protection to both antimony responsive and resistant Leishmania strains reflecting several aspects of clinical visceral leishmaniasis. 相似文献
7.
Tapia E Pérez-Jiménez E López-Fuertes L Gonzalo R Gherardi MM Esteban M 《Microbes and infection / Institut Pasteur》2003,5(2):73-84
Protocols of immunization based on the DNA prime/vaccinia virus (VV) boost regime with recombinants expressing relevant antigens have been shown to elicit protection against a variety of pathogens in animal model systems, and various phase I clinical trials have been initiated with this vaccination approach. We have previously shown that mice immunized with a DNA vector expressing p36/LACK of Leishmania infantum followed by a booster with VVp36/LACK induced significant protection against Leishmania major infection. To further improve this protocol of immunization, here we investigated whether the cytokines interleukin-12 (IL-12) and IL-18 could enhance protection against L. major infection in BALB/c mice. We found that priming with DNA vectors expressing p36/LACK and either IL-12 or IL-18, followed by a booster with a VV recombinant expressing the same L. infantum LACK antigen, elicit a higher cellular immune response than by using the same protocol in the absence of the cytokines. The cytokine IL-12 triggered a higher number of IFN-gamma-secreting cells specific for p36 protein than IL-18. When immunized animals were challenged with promastigotes, the highest protection against L. major infection was observed in animals primed with DNAp36 + DNA IL-12 + DNA IL-18 and boosted with VVp36. This protection correlated with a Th1 type of immune response. Our findings revealed that in prime/booster protocols, co-expressing IL-12 and IL-18 during priming is an efficient approach to protect against leishmaniasis. This combined prime/booster immunization regime could have wide use in fighting against parasitic and other infectious diseases. 相似文献
8.
The outcome and severity of some diseases correlate with the dominance of either the T helper 1 (Th1) or Th2 immune response, which is stimulated by IL-12 or IL-4, respectively. In the present study we demonstrate that gamma interferon (IFN-gamma) secretion by murine spleen cells stimulated with KM(+), a mannose-binding lectin from Artocarpus integrifolia, is due to IL-12 induction, because (1) macrophages from several sources (including cell lines) produced IL-12 p40 in response to KM(+), and (2) lectin-free supernatants from J774 cell line cultures stimulated with KM(+) induced the secretion of IFN-gamma by spleen cell cultures, an effect blocked by the supernatant pretreatment with anti-IL-12 antibody. The known pattern of susceptibility of BALB/c mice to infection with Leishmania major, attributed to high levels of IL-4 production leading to a Th2 nonprotective immune response, was modified by administration of KM(+). Draining lymph node cells from these immunized BALB/c mice (in contrast to cells from animals immunized only with soluble leishmanial antigen [SLA]) secreted high levels of IFN-gamma and low levels of IL-4, which characterized a Th1 rather than a Th2 response pattern. The footpad thickness of BALB/c mice immunized with SLA plus KM(+) and challenged with L. major was similar to that of uninfected mice. This beneficial effect against leishmanial infection was blocked by pretreatment of these mice with anti-IL-12 antibody. These observations indicate that KM(+) induces IL-12 p40 in vivo and has a protective effect against L. major infection. 相似文献