共查询到20条相似文献,搜索用时 0 毫秒
1.
MzrA was identified as a modulator of the EnvZ/OmpR two-component signal transduction system. Previous evidence indicated that MzrA interacts with EnvZ and modulates its enzymatic activities to influence OmpR phosphate (OmpR~P) levels. Moreover, MzrA was shown to connect the bacterial envelope stress response systems CpxA/CpxR and σ(E) to EnvZ/OmpR to widen the defensive response regulatory network. In this study, experiments were carried out to establish whether the membrane or periplasmic domain of MzrA is critical for MzrA-EnvZ interactions and to reveal MzrA residues that play an important role in these interactions. Data obtained from chimeric constructs, in which the transmembrane domain of MzrA was replaced with the unrelated transmembrane domain of NarX or signal sequence of PhoA, showed that the transmembrane domain residues of MzrA do not play a critical role in MzrA-EnvZ interactions. The importance of the periplasmic domain of MzrA in MzrA-EnvZ interactions was revealed by characterizing bifunctional, fully soluble, and periplasmically localized MalE::MzrA chimeras. This was further corroborated through the isolation of loss-of-function, single-amino-acid substitutions in the conserved periplasmic domain of MzrA that interfered with MzrA-EnvZ binding in a bacterial two-hybrid system. Together, the data suggest that the binding of MzrA to EnvZ influences the ability of EnvZ to receive and/or respond to environmental signals in the periplasm and modulate its biochemical output to OmpR. 相似文献
2.
3.
Heun M Binnenkade L Kreienbaum M Thormann KM 《Applied and environmental microbiology》2012,78(12):4400-4411
Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg(2+) or Mn(2+)) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions. 相似文献
4.
Daraselia N Dernovoy D Tian Y Borodovsky M Tatusov R Tatusova T 《Omics : a journal of integrative biology》2003,7(2):171-175
As more and more complete bacterial genome sequences become available, the genome annotation of previously sequenced genomes may become quickly outdated. This is primarily due to the discovery and functional characterization of new genes. We have reannotated the recently published genome of Shewanella oneidensis with the following results: 51 new genes have been identified, and functional annotation has been added to the 97 genes, including 15 new and 82 existing ones with previously unassigned function. The identification of new genes was achieved by predicting the protein coding regions using the HMM-based program GeneMark.hmm. Subsequent comparison of the predicted gene products to the non-redundant protein database using BLAST and the COG (Clusters of Orthologous Groups) database using COGNITOR provided for the functional annotation. 相似文献
5.
A Shewanella expression system has been used for an overproduction of c-type multiheme proteins. The proteins were exported to the periplasmic space for the maturation. Since the periplasmic expression system is attractive, especially for protease-sensitive proteins, an expression vector containing a signal peptide was constructed for expressions in the periplasmic space of Shewanella oneidensis. To evaluate the system, two eukaryotic proteins which originally do not have signal sequences and are difficult to express in Escherichia coli, were selected. The first is human cytochrome c. Properties of the recombinant cytochrome c were identical to those previously reported, indicating the protein is intact. The other was potato calcium-dependent protein kinase. The protein was expressed in periplasmic space. These results indicated that the system is generally applicable for any protein expression including c-type cytochromes, protease-sensitive proteins and those with multi-disulfide bonds because of transportation to the periplasmic space. 相似文献
6.
7.
Biofilms, or surface-attached microbial communities, are both ubiquitous and resilient in the environment. Although much is known about how biofilms form, develop, and detach, very little is understood about how these events are related to metabolism and its dynamics. It is commonly thought that large subpopulations of cells within biofilms are not actively producing proteins or generating energy and are therefore dead. An alternative hypothesis is that within the growth-inactive domains of biofilms, significant populations of living cells persist and retain the capacity to dynamically regulate their metabolism. To test this, we employed unstable fluorescent reporters to measure growth activity and protein synthesis in vivo over the course of biofilm development and created a quantitative routine to compare domains of activity in independently grown biofilms. Here we report that Shewanella oneidensis biofilm structures reproducibly stratify with respect to growth activity and metabolism as a function of size. Within domains of growth-inactive cells, genes typically upregulated under anaerobic conditions are expressed well after growth has ceased. These findings reveal that, far from being dead, the majority of cells in mature S. oneidensis biofilms have actively turned-on metabolic programs appropriate to their local microenvironment and developmental stage. 相似文献
8.
Tracy K. Teal Douglas P. Lies Barbara J. Wold Dianne K. Newman 《Applied microbiology》2006,72(11):7324-7330
Biofilms, or surface-attached microbial communities, are both ubiquitous and resilient in the environment. Although much is known about how biofilms form, develop, and detach, very little is understood about how these events are related to metabolism and its dynamics. It is commonly thought that large subpopulations of cells within biofilms are not actively producing proteins or generating energy and are therefore dead. An alternative hypothesis is that within the growth-inactive domains of biofilms, significant populations of living cells persist and retain the capacity to dynamically regulate their metabolism. To test this, we employed unstable fluorescent reporters to measure growth activity and protein synthesis in vivo over the course of biofilm development and created a quantitative routine to compare domains of activity in independently grown biofilms. Here we report that Shewanella oneidensis biofilm structures reproducibly stratify with respect to growth activity and metabolism as a function of size. Within domains of growth-inactive cells, genes typically upregulated under anaerobic conditions are expressed well after growth has ceased. These findings reveal that, far from being dead, the majority of cells in mature S. oneidensis biofilms have actively turned-on metabolic programs appropriate to their local microenvironment and developmental stage. 相似文献
9.
Meshulam-Simon G Behrens S Choo AD Spormann AM 《Applied and environmental microbiology》2007,73(4):1153-1165
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of DeltahydA, DeltahyaB, and DeltahydA DeltahyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions. 相似文献
10.
11.
Galit Meshulam-Simon Sebastian Behrens Alexander D. Choo Alfred M. Spormann 《Applied microbiology》2007,73(4):1153-1165
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of ΔhydA, ΔhyaB, and ΔhydA ΔhyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions. 相似文献
12.
Randa Abboud Radu Popa Virginia Souza-Egipsy Carol S. Giometti Sandra Tollaksen Jennifer J. Mosher Robert H. Findlay Kenneth H. Nealson 《Applied microbiology》2005,71(2):811-816
Shewanella oneidensis MR-1 is a mesophilic bacterium with a maximum growth temperature of ≈35°C but the ability to grow over a wide range of temperatures, including temperatures near zero. At room temperature (≈22°C) MR-1 grows with a doubling time of about 40 min, but when moved from 22°C to 3°C, MR-1 cells display a very long lag phase of more than 100 h followed by very slow growth, with a doubling time of ≈67 h. In comparison to cells grown at 22°C, the cold-grown cells formed long, motile filaments, showed many spheroplast-like structures, produced an array of proteins not seen at higher temperature, and synthesized a different pattern of cellular lipids. Frequent pilus-like structures were observed during the transition from 3 to 22°C. 相似文献
13.
Low-temperature growth of Shewanella oneidensis MR-1 总被引:1,自引:0,他引:1
Abboud R Popa R Souza-Egipsy V Giometti CS Tollaksen S Mosher JJ Findlay RH Nealson KH 《Applied and environmental microbiology》2005,71(2):811-816
Shewanella oneidensis MR-1 is a mesophilic bacterium with a maximum growth temperature of approximately 35 degrees C but the ability to grow over a wide range of temperatures, including temperatures near zero. At room temperature ( approximately 22 degrees C) MR-1 grows with a doubling time of about 40 min, but when moved from 22 degrees C to 3 degrees C, MR-1 cells display a very long lag phase of more than 100 h followed by very slow growth, with a doubling time of approximately 67 h. In comparison to cells grown at 22 degrees C, the cold-grown cells formed long, motile filaments, showed many spheroplast-like structures, produced an array of proteins not seen at higher temperature, and synthesized a different pattern of cellular lipids. Frequent pilus-like structures were observed during the transition from 3 to 22 degrees C. 相似文献
14.
Linlin Sun Miao Jin Wen Ding Jie Yuan John Kelly Haichun Gao 《Journal of bacteriology》2013,195(11):2550-2561
Shewanella oneidensis is a highly motile organism by virtue of a polar, glycosylated flagellum composed of flagellins FlaA and FlaB. In this study, the functional flagellin FlaB was isolated and analyzed with nano-liquid chromatography-mass spectrometry (MS) and tandem MS. In combination with the mutational analysis, we propose that the FlaB flagellin protein from S. oneidensis is modified at five serine residues with a series of novel O-linked posttranslational modifications (PTMs) that differ from each other by 14 Da. These PTMs are composed in part of a 274-Da sugar residue that bears a resemblance to the nonulosonic acids. The remainder appears to be composed of a second residue whose mass varies by 14 Da depending on the PTM. Further investigation revealed that synthesis of the glycans initiates with PseB and PseC, the first two enzymes of the Pse pathway. In addition, a number of lysine residues are found to be methylated by SO4160, an analogue of the lysine methyltransferase of Salmonella enterica serovar Typhimurium. 相似文献
15.
Shewanella oneidensis couples oxidation of lactate to respiration of many substrates. Here we report that llpR (l-lactate-positive regulator, SO_3460) encodes a positive regulator of l-lactate utilization distinct from previously studied regulators. We also demonstrate d-lactate inhibition of l-lactate utilization in S. oneidensis, resulting in preferential utilization of the d isomer. 相似文献
16.
Louie B Tarczy-Hornoch P Higdon R Kolker E 《Omics : a journal of integrative biology》2008,12(3):211-215
Proteins of unknown function are a barrier to our understanding of molecular biology. Assigning function to these "uncharacterized" proteins is imperative, but challenging. The usual approach is similarity searches using annotation databases, which are useful for predicting function. However, since the performance of these databases on uncharacterized proteins is basically unknown, the accuracy of their predictions is suspect, making annotation difficult. To address this challenge, we developed a benchmark annotation dataset of 30 proteins in Shewanella oneidensis. The proteins in the dataset were originally uncharacterized after the initial annotation of the S. oneidensis proteome in 2002. In the intervening 5 years, the accumulation of new experimental evidence has enabled specific functions to be predicted. We utilized this benchmark dataset to evaluate several commonly utilized annotation databases. According to our criteria, six annotation databases accurately predicted functions for at least 60% of proteins in our dataset. Two of these six even had a "conditional accuracy" of 90%. Conditional accuracy is another evaluation metric we developed which excludes results from databases where no function was predicted. Also, 27 of the 30 proteins' functions were correctly predicted by at least one database. These represent one of the first performance evaluations of annotation databases on uncharacterized proteins. Our evaluation indicates that these databases readily incorporate new information and are accurate in predicting functions for uncharacterized proteins, provided that experimental function evidence exists. 相似文献
17.
18.
19.
20.
Shewanella oneidensis MR-1 has conventionally been considered unable to use glucose as a carbon substrate for growth. The genome sequence of S. oneidensis MR-1 however suggests the ability to use glucose. Here, we demonstrate that during initial glucose exposure, S. oneidensis MR-1 quickly and frequently gains the ability to utilize glucose as a sole carbon source, in contrast to wild-type S. oneidensis, which cannot immediately use glucose as a sole carbon substrate. High-performance liquid chromatography and (14)C glucose tracer studies confirm the disappearance in cultures and assimilation and respiration, respectively, of glucose. The relatively short time frame with which S. oneidensis MR-1 gained the ability to use glucose raises interesting ecological implications. 相似文献