首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Skin-draining lymph nodes contain a number of dendritic cell (DC) subsets of different origins. Some of these are migratory, such as the skin-derived epidermal Langerhans cells and a separate dermal DC subset, whereas others are lymphoid resident in nature, such as the CD8+ DCs found throughout the lymphoid tissues. In this study, we examine the DC subset presentation of skin-derived self-Ag by migratory and lymphoid-resident DCs, both in the steady state and under conditions of local skin infection. We show that presentation of self-Ag is confined to skin-derived migrating DCs in both settings. Steady state presentation resulted in deletional T cell tolerance despite these DCs expressing a relatively mature phenotype as measured by traditional markers such as the level of MHC class II and CD86 expression. Thus, self-Ag can be carried to the draining lymph nodes by skin-derived DCs and there presented by these same cells for tolerization of the circulating T cell pool.  相似文献   

3.
Peyer's patch (PP) dendritic cells (DCs) have been shown to exhibit a distinct capacity to induce cytokine secretion from CD4(+) T cells compared with DCs in other lymphoid organs such as the spleen (SP). In this study, we investigated whether PP DCs are functionally different from DCs in the SP in their ability to induce Ab production from B cells. Compared with SP DCs, freshly isolated PP DCs induced higher levels of IgA secretion from naive B cells in DC-T cell-B cell coculture system in vitro. The IgA production induced by PP DCs was attenuated by neutralization of IL-6. In addition, the induction of IgA secretion by SP DCs, but not PP DCs, was further enhanced by the addition of exogenous IL-6. Finally, we demonstrated that only PP CD11b(+) DC subset secreted higher levels of IL-6 compared with other DC subsets in the PP and all SP DC populations, and that PP CD11b(+) DC induced naive B cells to produce higher levels of IgA compared with SP CD11b(+) DC. These results suggest a unique role of PP CD11b(+) DCs in enhancing IgA production from B cells via secretion of IL-6.  相似文献   

4.
The cell biology of cross-presentation is reviewed regarding exogenous antigen uptake, antigen degradation and entry into the major histocompatibility complex class I pathway. Whereas cross-presentation is not associated with enhanced phagocytic ability, certain receptors may favour uptake for cross-presentation for example mannose receptor for soluble glycoproteins. Perhaps, the defining property of the cross-presenting cell is some specialization in host machinery for handling and transport of antigen across organelles. Both cytosolic and vacuolar pathways are discussed. Which dendritic cell (DC) subset is the cross-presenting cell is explored. Cross-presentation is found within the CD8(+) subset resident in lymphoid organs. The role of other DC subsets (especially the migratory CD8(-) DC) and the route of antigen delivery are also discussed. Further consideration is given to antigen transfer between DC subsets and differential presentation to naive vs memory T cells.  相似文献   

5.
Protective immunity against viral pathogens depends on the generation and maintenance of a small population of memory CD8(+) T cells. Successful memory cell generation begins with early interactions between na?ve T cell and dendritic cells (DCs) within the inflammatory milieu of the secondary lymphoid tissues. Recent insights into the role of different populations of DCs, and kinetics of antigen presentation, during viral infections have helped to understand how DCs can shape the immune response. Here, we review the recent progress that has been made towards defining how specific DC subsets drive effector CD8(+) T-cell expansion and differentiation into memory cells. Further, we endeavour to examine how the molecular signals imparted by DCs coordinate to generate protective CD8(+) T-cell immunity.  相似文献   

6.
7.
8.
Dendritic cells (DCs) have a unique ability to stimulate naive T cells. Recent evidence suggests that distinct DC subsets direct different classes of immune responses in vitro and in vivo. In humans, the monocyte-derived CD11c+ DCs induce T cells to produce Th1 cytokines in vitro, whereas the CD11c- plasmacytoid T cell-derived DCs elicit the production of Th2 cytokines. In this paper we report that administration of either Flt3-ligand (FL) or G-CSF to healthy human volunteers dramatically increases distinct DC subsets, or DC precursors, in the blood. FL increases both the CD11c+ DC subset (48-fold) and the CD11c- IL-3R+ DC precursors (13-fold). In contrast, G-CSF only increases the CD11c- precursors (>7-fold). Freshly sorted CD11c+ but not CD11c- cells stimulate CD4+ T cells in an allogeneic MLR, whereas only the CD11c- cells can be induced to secrete high levels of IFN-alpha, in response to influenza virus. CD11c+ and CD11c- cells can mature in vitro with GM-CSF + TNF-alpha or with IL-3 + CD40 ligand, respectively. These two subsets up-regulate MHC class II costimulatory molecules as well as the DC maturation marker DC-lysosome-associated membrane protein, and they stimulate naive, allogeneic CD4+ T cells efficiently. These two DC subsets elicit distinct cytokine profiles in CD4+ T cells, with the CD11c- subset inducing higher levels of the Th2 cytokine IL-10. The differential mobilization of distinct DC subsets or DC precursors by in vivo administration of FL and G-CSF offers a novel strategy to manipulate immune responses in humans.  相似文献   

9.
We have recently demonstrated the presence of three populations of dendritic cells (DC) in the murine Peyer's patch. CD11b(+)/CD8alpha(-) (myeloid) DCs are localized in the subepithelial dome, CD11b(-)/CD8alpha(+) (lymphoid) DCs in the interfollicular regions, and CD11b(-)/CD8alpha(-) (double-negative; DN) DCs at both sites. We now describe the presence of a novel population of intraepithelial DN DCs within the follicle-associated epithelium and demonstrate a predominance of DN DCs only in mucosal lymphoid tissues. Furthermore, we demonstrate that all DC subpopulations maintain their surface phenotype upon maturation in vitro, and secrete a distinct pattern of cytokines upon exposure to T cell and microbial stimuli. Only myeloid DCs from the PP produce high levels of IL-10 upon stimulation with soluble CD40 ligand(-) trimer, or Staphylococcus aureus and IFN-gamma. In contrast, lymphoid and DN, but not myeloid DCs, produce IL-12p70 following microbial stimulation, whereas no DC subset produces IL-12p70 in response to CD40 ligand trimer. Finally, we show that myeloid DCs from the PP are particularly capable of priming naive T cells to secrete high levels of IL-4 and IL-10, when compared with those from nonmucosal sites, while lymphoid and DN DCs from all tissues prime for IFN-gamma production. These findings thus suggest that DC subsets within mucosal tissues have unique immune inductive capacities.  相似文献   

10.
11.
Although dendritic cells (DCs) regulate immune responses, they exhibit functional heterogeneity depending on their anatomical location. We examined the functional properties of intestinal DCs after oral administration of cholera toxin (CT), the most potent mucosal adjuvant. Two CD11c+ DC subsets were identified both in Peyer's patches and mesenteric lymph nodes (MLN) based on the expression of CD8alpha (CD8+ and CD8- DCs, respectively). A third subset of CD11c+CD8int was found exclusively in MLN. Feeding mice with CT induced a rapid and transient mobilization of a new CD11c+CD8- DC subset near the intestinal epithelium. This recruitment was associated with an increased production of the chemokine CCL20 in the small intestine and was followed by a massive accumulation of CD8int DCs in MLN. MLN DCs from CT-treated mice were more potent activators of naive T cells than DCs from control mice and induced a Th2 response. This increase in immunostimulating properties was accounted for by CD8int and CD8- DCs, whereas CD8+ DCs remained insensitive to CT treatment. Consistently, the CD8int and CD8- subsets expressed higher levels of costimulatory molecules than CD8+ and corresponding control DCs. Adoptive transfer experiments showed that these two DC subsets, unlike CD8+ DCs, were able to present Ags orally coadministered with CT in an immunostimulating manner. The ability of CT to mobilize immature DCs in the intestinal epithelium and to promote their emigration and differentiation in draining lymph nodes may explain the exceptional adjuvant properties of this toxin on mucosal immune responses.  相似文献   

12.
Murine dendritic cells (DCs) can present Ag in an immunogenic or tolerogenic fashion, the distinction depending on either the occurrence of specialized DC subsets or the maturation or activation state of the DC. Although DC subsets may be programmed to direct either tolerance or immunity, it is not known whether appropriate environmental stimulation can result in complete flexibility of a basic program. Using splenic CD8(-) and CD8(+) DCs that mediate the respective immunogenic and tolerogenic presentation of self peptides, we show that both the in vivo and in vitro activities of either subset can be altered by ligation of specific surface receptors. Otherwise immunogenic CD8(-) DCs become tolerogenic upon B7 ligation by soluble CTLA-4, a maneuver that initiates immunosuppressive tryptophan catabolism. In contrast, CD40 ligation on tolerogenic CD8(+) DCs makes these cells capable of immunogenic presentation. Thus, environmental conditioning by T cell ligands may alter the default function of DC subsets to meet the needs of flexibility and redundancy.  相似文献   

13.
Dendritic cells (DCs) are a heterogeneous population of APCs with critical roles in T cell activation and immune regulation. We report in this study the identification and characterization of a novel subset of DCs resident in skin-draining peripheral lymph nodes of normal mice. This subset of CD11c(high)CD40(high)CD8alpha(intermediate (int)) DCs expresses the collagen-binding integrin, alpha1beta1, and the E-cadherin-binding integrin, alphaEbeta7. Although alpha1beta1 and alphaEbeta7 are also expressed on CD11c(high)CD40(int)CD8alpha(high) lymphoid DCs, CD11c(high)CD40(high)CD8alpha(int) DCs demonstrate preferential integrin-mediated adhesion to collagen and fibronectin. This DC subset most likely acquires expression of these integrins in peripheral lymph node, as this subset is not found in the spleen or mesenteric lymph node, and recent DC migrants from the skin lack expression of alpha1beta1 and alphaEbeta7 integrins. Resident CD40(high) DCs express alpha1beta1 integrin and colocalize with collagen in lymph nodes. When compared with CD11c(high)CD40(high)CD8alpha(int) DCs lacking expression of these integrins, the alpha1beta1+alphaEbeta7+DC subset exhibits more efficient formation of Ag-independent conjugates with T cells, and a decreased ability to acquire soluble Ag. Thus, the alpha1beta1 and alphaEbeta7 integrins define a unique population of peripheral lymph node-derived DCs with altered functional properties and adhesive potential that localizes these cells to sites in lymph nodes where Ag presentation to T cells occurs.  相似文献   

14.
Dendritic cells (DC) represent a rather heterogeneous cell population with regard to morphology, phenotype, and function and, like most cells of the immune system, are subjected to a continuous renewal process. CD103(+) (integrin alpha(E)) DC have been identified as a major mucosal DC subset involved in the induction of tissue-specific homing molecules on T cells, but little is known about progenitors able to replenish this DC subset. Herein we report that lineage (lin)(-)CX(3)CR1(+)c-kit(+) (GFP(+)c-kit(+)) bone marrow cells can differentiate to either CD11c(+)CD103(-) or CD11c(+)CD103(+) DC in vitro and in vivo. Gene expression as well as functional assays reveal distinct phenotypical and functional properties of both subsets generated in vitro. CD103(-) DC exhibit enhanced phagocytosis and respond to LPS stimulation by secreting proinflammatory cytokines, whereas CD103(+) DC express high levels of costimulatory molecules and efficiently induce allogeneic T cell proliferation. Following adoptive transfer of GFP(+)c-kit(+) bone marrow cells to irradiated recipients undergoing allergic lung inflammation, we identified donor-derived CD103(+) DC in lung and the lung-draining bronchial lymph node. Collectively, these data indicate that GFP(+)c-kit(+) cells contribute to the replenishment of CD103(+) DC in lymphoid and nonlymphoid organs.  相似文献   

15.
Dendritic cells (DCs) play a central role in initiating immune responses. Despite this, there is little understanding how different DC subsets contribute to immunity to different pathogens. CD8alpha(+) DC have been shown to prime immunity to HSV. Whether this very limited capacity of a single DC subset priming CTL immunity is restricted to HSV infection or is a more general property of anti-viral immunity was examined. Here, we show that the CD8alpha(+) DCs are the principal DC subset that initiates CTL immunity to s.c. infection by influenza virus, HSV, and vaccinia virus. This same subset also dominated immunity after i.v. infection with all three viruses, suggesting a similar involvement in other routes of infection. These data highlight the general role played by CD8alpha(+) DCs in CTL priming to viral infection and raises the possibility that this DC subset is specialized for viral immunity.  相似文献   

16.
The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin polimerization in hematopoietic cells. Mutations in WASp cause a severe immunodeficiency characterized by defective initiation of primary immune response and autoimmunity. The contribution of altered dendritic cells (DCs) functions to the disease pathogenesis has not been fully elucidated. In this study, we show that conventional DCs develop normally in WASp-deficient mice. However, Ag targeting to lymphoid organ-resident DCs via anti-DEC205 results in impaired naive CD8(+) T cell activation, especially at low Ag doses. Altered trafficking of Ag-bearing DCs to lymph nodes (LNs) accounts only partially for defective priming because correction of DCs migration does not rescue T cell activation. In vitro and in vivo imaging of DC-T cell interactions in LNs showed that cytoskeletal alterations in WASp null DCs causes a reduction in the ability to form and stabilize conjugates with naive CD8(+) T lymphocytes both in vitro and in vivo. These data indicate that WASp expression in DCs regulates both the ability to traffic to secondary lymphoid organs and to activate naive T cells in LNs.  相似文献   

17.
Among the different subsets of dendritic cells (DC) described in humans and mice, epidermal Langerhans cells and dermal DCs represent the only DC populations resident in normal skin. In this study we describe a population of CD4(+)CD3(-) plasmacytoid DC (pDC)-like cells that accumulate in the dermis and spleens of mice topically treated with imiquimod, a low m.w. immune response modifier with potent antiviral and antitumor activities. These CD4(+)CD3(-) cells coexpress GR-1, B220, MHC class II, and, to a lesser extent, CD11c and display the phenotypic features of pDCs described in lymphoid organs. The accumulation of pDC-like cells after imiquimod treatment was detected not only in normal skin, but also in intradermally induced melanomas. Imiquimod treatment leads either to complete regression or to a significant reduction of the tumors. The number of pDCs correlates well with the clinical response of the tumors to the drug, suggesting that the antitumor effects of imiquimod could be mediated at least in part by the recruitment of pDC-like cells to the skin. Therefore, strategies aimed at activating and directing these cells into neoplastic tissues may be a promising and novel approach for the immunotherapy of various types of cancer.  相似文献   

18.
Dendritic cells (DCs) are a rare population of leukocytes specialized in Ag processing and presentation to T cells. We have previously shown that cultured rat splenic DCs exhibit a cytotoxic activity against selected target cells. In this study, we analyzed this function in DCs freshly prepared from lymphoid organs using the DC-specific OX62 mAb and magnetic beads. Freshly extracted splenic DCs, but not lymph node and thymic DCs, exhibited a strong and moderate cytotoxic activity against YAC-1 and K562 target cells, respectively. FACS analyses showed that spleen contained a minor subset (10-15%) of CD4(+) and class II(int) DCs that also expressed the OX41 Ag and the lymphoid-related Ags CD5 and CD90 (Thy-1) and a major (80-85%) subset of CD4(-)/OX41(-)/CD5(-) and class II(int) DCs. The cytotoxic activity of splenic DCs was strictly restricted to the CD4(-) DCs, a subset poorly represented in LN and thymus. Contrasting with our previous report using cultured splenic DCs, freshly isolated splenic DCs killed YAC-1 cells using a Ca(2+)-independent mechanism, but this function did not appear mediated by Fas ligand, TNF-related apoptosis-inducing ligand, or TNF-alpha. Therefore, rat DCs contain a subset of naturally cytolytic cells that could play a role in both innate and acquired immune responses. Together with our previous report, these data suggest that rat DCs can use two mechanisms of cytotoxicity depending on their maturation/activation state.  相似文献   

19.
20.
Foxp3(+)CD25(+)CD4(+) regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-beta- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8(+) DEC-205/CD205(+) DCs, but not the major fraction of CD8(-) DC inhibitory receptor-2 (DCIR2)(+) DCs, induce functional Foxp3(+) Treg from Foxp3(-) precursors in the presence of low doses of Ag but without added TGF-beta. CD8(+)CD205(+) DCs preferentially express TGF-beta, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-beta. In contrast, CD8(-)DCIR2(+) DCs better induce Foxp3(+) Treg when exogenous TGF-beta is supplied. In vivo, CD8(+)CD205(+) DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG(-/-) Foxp3(-)CD4(+) T cells, whereas the CD8(-)DCIR2(+) DCs better stimulate natural Foxp3(+) Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3(+) Treg, in part through the endogenous formation of TGF-beta. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3(+) Treg for treatment of autoimmune diseases, transplant rejection, and allergy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号