首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys136-His137-Glu168. Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mm and kcat = 7.8 s−1) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response.  相似文献   

2.
The Escherichia coli protein YajL (ThiJ) is a member of the DJ-1 superfamily with close homologues in many prokaryotes. YajL also shares 40% sequence identity with human DJ-1, an oncogene and neuroprotective protein whose loss-of-function mutants are associated with certain types of familial, autosomal recessive Parkinsonism. We report the 1.1 angstroms resolution crystal structure of YajL in a crystal form with two molecules in the asymmetric unit. The structure of YajL is remarkably similar to that of human DJ-1 (0.9 angstroms C(alpha) RMSD) and both proteins adopt the same dimeric structure. The conserved cysteine residue located in the "nucleophile elbow" is oxidized to either cysteine sulfenic or sulfinic acid in the two molecules in the asymmetric unit, and a mechanism for this oxidation is proposed that may be valid for other proteins in the DJ-1 superfamily as well. Rosenfield difference matrix analysis of the refined anisotropic displacement parameters in the YajL structure reveals significant differences in the intramolecular flexibility of the two non-crystallographic symmetry-related molecules in the asymmetric unit. Lastly, a comparison of the crystal structures of the four different E.coli members of the DJ-1 superfamily indicates that the variable oligomerization in this superfamily is due to a combination of protein-specific insertions into the core fold that form specific interfaces while occluding others plus optimization of residues in the structurally invariant regions of the core fold that facilitate protein-protein interactions.  相似文献   

3.
The genes that control mammalian programmed cell death are conserved across wide evolutionary distances. Although plant cells can undergo apoptosis-like cell death, plant homologs of mammalian regulators of apoptosis have, in general, not been found. This is in part due to the lack of primary sequence conservation between animal and putative plant regulators of apoptosis. Thus, alternative approaches beyond sequence similarities are required to find functional plant homologs of apoptosis regulators. Here, we present the results of using advanced bioinformatic tools to uncover the Arabidopsis family of BAG proteins. The mammalian BAG (Bcl-2-associated athanogene) proteins are a family of chaperone regulators that modulate a number of diverse processes ranging from proliferation to growth arrest and cell death. Such proteins are distinguished by a conserved BAG domain that directly interacts with Hsp70 and Hsc70 proteins to regulate their activity. Our searches of the Arabidopsis thaliana genome sequence revealed seven homologs of the BAG protein family. We further show that plant BAG family members are also multifunctional and remarkably similar to their animal counterparts, as they regulate apoptosis-like processes ranging from pathogen attack to abiotic stress and development.  相似文献   

4.
Chloroplasts must divide repeatedly to maintain their population during plant growth and development. A number of proteins required for chloroplast division have been identified, and the functional relationships between them are beginning to be elucidated. In both chloroplasts and bacteria, the future site of division is specified by placement of the Filamentous temperature sensitive Z (FtsZ) ring, and the Min system serves to restrict FtsZ ring formation to mid-chloroplast or mid-cell. How the Min system is regulated in response to environmental and developmental factors is largely unstudied. Here, we investigated the role in chloroplast division played by two Arabidopsis thaliana homologs of the bacterial mechanosensitive (MS) channel MscS: MscS-Like 2 (MSL2) and MSL3. Immunofluorescence microscopy and live imaging approaches demonstrated that msl2 msl3 double mutants have enlarged chloroplasts containing multiple FtsZ rings. Genetic analyses indicate that MSL2, MSL3, and components of the Min system function in the same pathway to regulate chloroplast size and FtsZ ring formation. In addition, an Escherichia coli strain lacking MS channels also showed aberrant FtsZ ring assembly. These results establish MS channels as components of the chloroplast division machinery and suggest that their role is evolutionarily conserved.  相似文献   

5.
Drosophila always early (aly) is essential for spermatogenesis, and is related to the LIN-9 protein of Caenorhabditis elegans; lin-9 is a class B Synthetic Multivulva gene (synMuvB) required for gonadal sheath development. Aly/LIN-9 have two conserved regions, called domains 1 and 2, which have been identified in homologous proteins from several multicellular eukaryotes, including the model plant Arabidopsis thaliana. We cloned and sequenced cDNAs of three different A. thaliana ALWAYS EARLY homologs (AtALY1, AtALY2 and AtALY3), analysed the expression pattern of these three genes and show that AtALY1, like Aly, is nuclear localised. We also demonstrate that the plant homologs of aly/lin-9 contain an additional N-terminal myb domain not present in the animal Aly/LIN-9 proteins, and that part of the ALY/LIN-9 conserved domain 1 in the predicted plant proteins is related to the TUDOR domain.  相似文献   

6.
PsbP, an extrinsic subunit of photosystem II (PSII), is a nuclear-encoded protein that optimizes the water-splitting reaction in vivo. In addition to PsbP, higher plants have two nuclear-encoded genes for PsbP homologs (PsbP-like proteins [PPLs]) that show significant sequence similarity to a cyanobacterial PsbP homolog (cyanoP); however, the function of PPLs in higher plants has not yet been elucidated. In this study, we characterized Arabidopsis (Arabidopsis thaliana) mutants lacking either of two PPLs, PPL1 and PPL2. Phylogenetic analysis suggests that PPL1 would be an ortholog of cyanoP, and PPL2 and PsbP may have a paralogous relationship with PPL1. Analysis on mRNA expression profiles showed that PPL1 expressed under stress conditions and PPL2 coexpressed with the subunits of chloroplast NAD(P)H dehydrogenase (NDH) complex. Consistent with these suggestions, PSII activity in a ppl1 mutant was more sensitive to high-intensity light than wild type, and the recovery of photoinhibited PSII activity was delayed in ppl1 plants. Therefore, PPL1 is required for efficient repair of photodamaged PSII. Furthermore, the stoichiometric level and activity of the chloroplast NDH complex in thylakoids were severely decreased in a ppl2 mutant, demonstrating that PPL2 is a novel thylakoid lumenal factor required for accumulation of the chloroplast NDH complex. These results suggest that during endosymbiosis and subsequent gene transfer to the host nucleus, cyanoP from ancient cyanobacteria evolved into PPL1, PPL2, and PsbP, and each of them has a distinct role in photosynthetic electron transfer in Arabidopsis.  相似文献   

7.
We report the crystal structure at 1.8-A resolution of human DJ-1, which has been linked to early onset Parkinson's disease. The monomer of DJ-1 contains the alpha/beta-fold that is conserved among members of the DJ-1/ThiJ/PfpI superfamily. However, the structure also contains an extra helix at the C terminus, which mediates a novel mode of dimerization for the DJ-1 proteins. A putative active site has been identified near the dimer interface, and the residues Cys-106, His-126, and Glu-18 may play important roles in the catalysis by this protein. Studies with the disease-causing L166P mutant suggest that the mutation has disrupted the C-terminal region and the dimerization of the protein. The DJ-1 proteins may function only as dimers. The Lys to Arg mutation at residue 130, the site of sumoylation of DJ-1, has minimal impact on the structure of the protein.  相似文献   

8.
Molecular chaperones are required for the translocation of many proteins across organellar membranes, presumably by providing energy in the form of ATP hydrolysis for protein movement. In the chloroplast protein import system, a heat shock protein 100 (Hsp100), known as Hsp93, is hypothesized to be the chaperone providing energy for precursor translocation, although there is little direct evidence for this hypothesis. To learn more about the possible function of Hsp93 during protein import into chloroplasts, we isolated knockout mutant lines that contain T-DNA disruptions in either atHSP93-V or atHSP93-III, which encode the two Arabidopsis (Arabidopsis thaliana) homologs of Hsp93. atHsp93-V mutant plants are much smaller and paler than wild-type plants. In addition, mutant chloroplasts contain less thylakoid membrane when compared to the wild type. Plastid protein composition, however, seems to be largely unaffected in atHsp93-V knockout plants. Chloroplasts isolated from the atHsp93-V knockout mutant line are still able to import a variety of precursor proteins, but the rate of import of some of these precursors is significantly reduced. These results indicate that atHsp93-V has an important, but not essential, role in the biogenesis of Arabidopsis chloroplasts. In contrast, knockout mutant plants for atHsp93-III, the second Arabidopsis Hsp93 homolog, had a visible phenotype identical to the wild type, suggesting that atHsp93-III may not play as important a role as atHsp93-V in chloroplast development and/or function.  相似文献   

9.
Several chloroplast proteases have been characterized in recent years. The ATP-dependent chloroplast proteases Clp and FtsH stand out because they form multi-subunit complexes consisting of different gene products. Surprisingly, both green and non-green plastids appear to contain a similar soluble Clp core proteolytic complex, consisting of five ClpP proteases, their non-catalytic ClpR homologs, and two ClpS homologs that have unknown function. Analyses of single and double FtsH1, FtsH2, FtsH5 and FtsH8 mutants, and overexpression of FtsH proteins in these Arabidopsis thaliana mutants show partial redundancies within pairs of closely related FtsH thylakoid proteins. The presence of at least one member of each pair is essential for functional accumulation. Other chloroplast proteases have also been identified recently. Future challenges include the identification of substrate recognition mechanisms and elucidating the role of proteases in chloroplast biogenesis and function.  相似文献   

10.
11.
Little is understood about the role of nucleolar RNA binding proteins in ribosome biogenesis, although there is a clear need for them based on the strict folding requirements of the pre-rRNA. We have identified a superfamily of RNA binding proteins whose members are required for different stages of ribosome biogenesis. The Imp4 superfamily is composed of five individual families (Imp4, Rpf1, Rpf2, Brx1, and Ssf) that all possess the sigma(70)-like motif, a eukaryotic RNA binding domain with prokaryotic origins. The Imp4 superfamily members associate with RNAs that are consistent with their distinct roles in ribosome biogenesis and suggest the mechanisms by which they function.  相似文献   

12.
13.
YajL is the closest Escherichia coli homolog of the Parkinsonism-associated protein DJ-1, a multifunctional oxidative stress response protein whose biochemical function remains unclear. We recently described the oxidative-stress-dependent aggregation of proteins in yajL mutants and the oxidative-stress-dependent formation of mixed disulfides between YajL and members of the thiol proteome. We report here that yajL mutants display increased protein sulfenic acids levels and that formation of mixed disulfides between YajL and its protein substrates in vivo is inhibited by the sulfenic acid reactant dimedone, suggesting that YajL preferentially forms disulfides with sulfenylated proteins. YajL (but not YajL(C106A)) also forms mixed disulfides in vitro with the sulfenylated form of bovine serum albumin. The YajL-serum albumin disulfides can be subsequently reduced by glutathione or dihydrolipoic acid. We also show that DJ-1 can form mixed disulfides with sulfenylated E. coli proteins and with sulfenylated serum albumin. These results suggest that YajL and possibly DJ-1 function as covalent chaperones involved in the detection of sulfenylated proteins by forming mixed disulfides with them and that these disulfides are subsequently reduced by low-molecular-weight thiols.  相似文献   

14.
Nucleoporins (Nups) are building blocks of the nuclear pore complex (NPC) that mediate cargo trafficking between the nucleus and the cytoplasm. Although the physical structure of the NPC is well studied in yeast and vertebrates, little is known about the structure of NPCs or the function of most Nups in plants. Recently we demonstrated two Nups in Arabidopsis: LONO1 (LNO1), homolog of human NUP214 and yeast Nup159, and AtGLE1, homolog of yeast Gle1, are required for early embryogenesis and seed development. To identify LNO1 and AtGLE1 homologs in other plant species, we searched the protein databases and identified 30 LNO1-like and 35 AtGLE1-like proteins from lower plant species to higher plants. Furthermore, phylogenetic analyses indicate that the evolutionary trees of these proteins follow expected plant phylogenies. High sequence homology and conserved domain structure of these nucleoporins suggest important functions of these proteins in nucleocytoplasmic transport, growth and development in plants.  相似文献   

15.
SPO11, a homolog of the subunit A of the archaebacterial topoisomerase VI, is essential for double-strand break (DSB)-induced initiation of meiotic recombination. In contrast with single homologs in animals and yeasts, three homologs are present in Arabidopsis thaliana and other higher plants. Whereas At SPO11-3 is involved in somatic endoreduplication, At SPO11-1 and, as recently shown, At SPO11-2 are essential for the initiation of meiotic recombination. Further defining the role of At SPO11-2, we were able to demonstrate that it is required for proper chromosome segregation, as its loss resulted in aneuploidy in the surviving progeny. The double mutant spo11-1 spo11-2 does not differ phenotypically from the single mutants, indicating that both proteins are required for the same step. Contrary to the observations for the At rad51-1 single mutant, the combination of spo11-2 and rad51-1 did not lead to chromosome fragmentation, indicating that SPO11-2, like SPO11-1, is required for DSB induction. As the meiotic phenotype of both single SPO11 mutants can be reversed by complementation using the full-length genes but not the same constructs mutated in their respective catalytically active Tyr, both proteins seem to participate directly in the DNA breakage reaction. The active involvement of two SPO11 homologs for DSB formation reveals a striking difference between plants and other eukaryotes in meiosis.  相似文献   

16.
17.
First described in Arabidopsis thaliana, Tousled-like kinases (Tlks) are highly conserved in both plants and animals. In plants, Tousled kinase is essential for proper flower and leaf development, but no direct functional link to any other plant gene product has yet been established. Likewise, the role of Tlks in animals is unknown. In human cells, two structurally similar Tlks, Tlk1 and Tlk2, were recently shown to be cell cycle-regulated kinases with maximal activities during S phase. Here, we report the identification of two human homologs of the Drosophila chromatin assembly factor Asf1 (anti-silencing function 1) as physiological substrates of Tlks. We show that human Asf1 proteins are phosphorylated by Tlks both in vivo and in vitro. Furthermore, Asf1 proteins are phosphorylated during S phase, when Tlks are maximally active. Conversely, Asf1 proteins are dephosphorylated upon the activation of the DNA replication checkpoint, concomitant with the rapid inactivation of Tlks. These data indicate that Tlk family members regulate chromatin assembly during DNA replication, and they suggest a plausible explanation for the pleiotropic developmental defects of plant tousled mutants.  相似文献   

18.
19.
In chloroplasts, the transition metals iron and copper play an essential role in photosynthetic electron transport and act as cofactors for superoxide dismutases. Iron is essential for chlorophyll biosynthesis, and ferritin clusters in plastids store iron during germination, development, and iron stress. Thus, plastidic homeostasis of transition metals, in particular of iron, is crucial for chloroplast as well as plant development. However, very little is known about iron uptake by chloroplasts. Arabidopsis thaliana PERMEASE IN CHLOROPLASTS1 (PIC1), identified in a screen for metal transporters in plastids, contains four predicted alpha-helices, is targeted to the inner envelope, and displays homology with cyanobacterial permease-like proteins. Knockout mutants of PIC1 grew only heterotrophically and were characterized by a chlorotic and dwarfish phenotype reminiscent of iron-deficient plants. Ultrastructural analysis of plastids revealed severely impaired chloroplast development and a striking increase in ferritin clusters. Besides upregulation of ferritin, pic1 mutants showed differential regulation of genes and proteins related to iron stress or transport, photosynthesis, and Fe-S cluster biogenesis. Furthermore, PIC1 and its cyanobacterial homolog mediated iron accumulation in an iron uptake-defective yeast mutant. These observations suggest that PIC1 functions in iron transport across the inner envelope of chloroplasts and hence in cellular metal homeostasis.  相似文献   

20.
The Arabidopsis thaliana ABC protein superfamily, a complete inventory   总被引:2,自引:0,他引:2  
We describe the first complete inventory of ATP-binding cassette (ABC) proteins from a multicellular organism, the model plant Arabidopsis thaliana. By the application of several search criteria, Arabidopsis was found to contain a total of 129 open reading frames (ORFs) capable of encoding ABC proteins, of which 103 possessed contiguous transmembrane spans and were identified as putative intrinsic membrane proteins. Fifty-two of the putative intrinsic membrane proteins contained at least two transmembrane domains (TMDs) and two nucleotide-binding folds (NBFs) and could be classified as belonging to one of five subfamilies of full-molecule transporters. The other 51 putative membrane proteins, all of which were half-molecule transporters, fell into five subfamilies. Of the remaining ORFs identified, all of which encoded proteins lacking TMDs, 11 could be classified into three subfamilies. There were no obvious homologs in other organisms for 15 of the ORFs which encoded a heterogeneous group of non-intrinsic ABC proteins (NAPs). Unrooted phylogenetic analyses substantiated the subfamily designations. Notable features of the Arabidopsis ABC superfamily was the presence of a large yeast-like PDR subfamily, and the absence of genes encoding bona fide cystic fibrosis transmembrane conductance regulator (CFTR), sulfonylurea receptor (SUR), and heavy metal tolerance factor 1 (HMT1) homologs. Arabidopsis was unusual in its large allocation of ORFs (a minimum of 0.5%) to members of the ABC protein superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号