首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Methoxychlor, a currently used pesticide, is demethylated and hydroxylated by several hepatic microsomal cytochrome P450 enzymes. Also, methoxychlor undergoes metabolic activation, yielding a reactive intermediate (M*) that binds irreversibly and apparently covalently to microsomal proteins. The study investigated whether methoxychlor could inhibit or inactivate certain liver microsomal P450 enzymes. The regioselective and stereoselective hydrox-ylation of testosterone and the 2-hydroxylation of estradiol (E2) were utilized as markers of the P450 enzymes inhibited by methoxychlor. Both reversible and time-dependent inhibition were examined. Coincubation of methoxychlor and testosterone with liver microsomes from phenobarbital treated (PB-microsomes) male rats, yielded marked diminution of 2α- and 16α-testosterone hydroxylation, indicating strong inhibition of P4502C11 (P450h). Methoxychlor moderately inhibited 2β-, 7α-, 15α-, 15β-, and 16β-hydroxylation and androstenedi-one formation. There was only a weak inhibition of 6β-ydroxylation of testosterone. The methox-ychlor-mediated inhibition of 6β-hydroxylation was competitive. By contrast, when methoxychlor was permitted to be metabolized by PB-microsomes or by liver microsomes from pregnenolone-16α-car-bonitrile treated rats (PCN-microsomes) prior to addition of testosterone, a pronounced time-dependent inhibition of 6β-hydroxylation was observed, suggesting that methoxychlor inactivates the P450 3A isozyme(s). The di-demethylated methoxychlor (bis-OH-M) and the tris-hydroxy (ca-techol) methoxychlor metabolite (tris-OH-M) inhibited 6β-hydroxylation in PB-microsomes competitively and noncompetitively, respectively; however, these methoxychlor metabolites did not exhibit a time-dependent inhibition. Methoxychlor inhibited competitively the formation of 7α-hydroxytestosterone (7α-OH-T) and 16α-hydroxy-testosterone (16α-OH-T) but exhibited little or no time-dependent inhibition of generation of these metabolites, indicating that P450s 2A1, 2B1/B2, and 2C11 were inhibited but not inactivated. Methoxychlor inhibited in a time-dependent fashion the 2-hydroxylation of E2 in PB-microsomes. However, bis-OH-M exhibited solely reversible inhibition of the 2-hydroxylation, supporting our conclusion that the inactivation of P450s does not involve participation of the demethylated metabolites. Both competitive inhibition and time-dependent inactivation of human liver P450 3A (6β-hydroxylase) by methoxychlor, was observed. As with rat liver microsomes, the human 6β-hydroxylase was inhibited by bis-OH-M and tris-OH-M competitively and noncompetitively, respectively. Testosterone and estradiol strongly inhibited the irreversible binding of methoxychlor to microsomal proteins. This might explain the “clean” competitive inhibition by methoxychlor of the 6β-OH-T formation when the compounds were coin-cubated. Glutathione (GSH) has been shown to interfere with the irreversible binding of methoxychlor to PB-microsomal proteins. The finding that the coincubation of GSH with methoxychlor partially diminishes the time-dependent inhibition of 6β-hydroxylation provides supportive evidence that the inactivation of P450 3A isozymes by methoxychlor is related to the formation of M*.  相似文献   

3.
Evidence is accumulating that estradiol (E2) may play a dual role in carcinogenic and anticarcinogenic effects by different metabolic pathways. It has been shown that some metabolites of E2 exert proliferative and others anti-proliferative properties on human cancer cells. In the present study, the effects of E2 and its four primary metabolites including 2-hydroxyestradiol (2OHE2), 4-hydroxyestradiol (4OHE2), 2-methoxyestradiol (2ME), and 4-methoxyestradiol (4ME) on proliferation and cell cycle in RL95-2 human endometrial cells were investigated. Our results indicate that 2ME and 2OHE2, but not E2, 4ME, and 4OHE2, exhibit the inhibitory effect through cell cycle arrest at G2/M. 2ME and 2OHE2-induced G2/M cell cycle arrest associated with activation of p53 (Ser15), upregulation of p21(WAF1/Cip1) (p21) and GADD45, inactivation of Cdc2 (Tyr15), as well as downregulation of Cyclin B1. 2ME and 2OHE2-mediated cell cycle arrest at G2/M was also related to activation of protein kinase Chk1 which is associated with p53 (Ser20) activation and downstream responses.  相似文献   

4.
Increased urinary catechol estrogen excretion in female smokers   总被引:2,自引:0,他引:2  
Premenopausal female smokers show significantly increased estrogen 2-hydroxylation, which may account in part for the anti-estrogenic effects of cigarette smoking. We have measured five major urinary estrogens, including estradiol (E2), estrone (E1), 16 alpha-hydroxyestrone (16 alpha OHE1), estriol (E3), and 2-hydroxyestrone (2OHE1), in premenopausal female smokers and non-smokers, to determine whether increased C-2 hydroxylation affected the urinary excretory patterns in these subjects. While total measured estrogen excretion in the follicular phase did not differ significantly between the two groups, urinary 2OHE1 among the smokers constituted a significantly greater proportion of the total (31.1 vs 18.2%, P less than 0.02). This difference was largely caused by significantly increased urinary 2OHE1 and decreased E3 observed in smokers. A urinary catechol estrogen index, defined by [2OHE1]/[E3], was significantly elevated in smokers compared with non-smokers (1.67 +/- 0.21 vs 0.56 +/- 0.08, P less than 0.001), and this urinary index correlated strongly with radiometrically determined estrogen 2-hydroxylation (r = 0.84, P less than 0.01). Ratios of the various estrogen metabolites did not vary substantially throughout the menstrual cycle. Urinary estrogen indices as described here may therefore be useful in demonstrating differences in estrogen metabolism, specifically 2-hydroxylation vs 16 alpha-hydroxylation, in selected populations.  相似文献   

5.
Follicular fluid, obtained by aspiration of human Graafian follicles in cycles stimulated by clomiphene and hMG + hCG, was analyzed for estrogen content. Carefully controlled extraction and efficient preliminary chromatographic separations were set up. Deuterium labelled analogues were used as internal standards for the quantitative determination by gas chromatography-mass spectrometry and some new derivatives were included in the identification procedure. The identified estrogens and their mean concentrations (ng/ml) are: 2-hydroxy-estrone (0.14), 4-hydroxy-estrone (0.12), 2-hydroxy-estradiol (0.36), 4-hydroxy-estradiol (0.34), 6α-hydroxy-estradiol (13.2), 6β-hydroxy-estradiol (6.40), 2-methoxy-estrone (0.83), 2-methoxy-estradiol (10.5), 16-oxo-estradiol (0.41), estriol (10.2), estradiol-17β (1365), estradiol 17α (1.91), estrone (211). Metabolism of estradiol by 6-hydroxylation seems to be predominant in the human ovary. The other data suggest that 2-hydroxylation, with subsequent O-methylation, and 16-hydroxylation may be by equivalent pathways, since the sum of the 2-methoxy-estrone and 2-methoxy estradiol concentrations is rather similar to the estriol concentration. Hence, the latter three compounds and the 6-hydroxy-estradiols may be end-products of follicular estrogen metabolism. Catechol estrogen formation by 2-hydroxylation and 4-hydroxylation is shown to be of equal importance in the ovary. These results confirm the presence in the human follicle of various competing estrogen hydroxylases and catechol-O-methyltransferase.  相似文献   

6.
7.
Objective: Systemic loss of estradiol (E2) during menopause is associated with increased adiposity which can be prevented with E2 replacement. Rodent studies suggest that E2, or lack of, is a key mediator in menopause‐related metabolic changes. We have previously demonstrated that E2 treatment produces a rapid, dose‐dependent activation of AMP‐activated protein kinase (AMPK) in murine skeletal muscle. Activation of AMPK is implicated in the therapeutic benefits of many insulin sensitizing agents including metformin and thiazolidinediones. Here, we expand our observations and provide novel data which demonstrate that in addition to E2, its metabolite 2‐hydroxyestradiol (2‐HE2), activate AMPK in C2C12 myotubes. Methods and Procedures: C2C12 myotubes were used to examine the effects on E2 and the by‐products of its metabolism on AMPK activation. Results: Low concentrations of E2 (10 and 100 nmol/l) were found to increase AMPK phosphorylation by ~1.6‐fold, while a higher concentration (10 μmol/l) resulted in a ~3.0‐fold increase. In comparison to E2 treatment alone, incubation of myotubes with E2 and 1‐aminobenzotriazole (ABT) (a CYP450 inhibitor that blocks metabolism of E2) caused AMPK activation to be enhanced at low E2 concentrations, but attenuated at higher concentrations. The effects of ABT suggested that one or more E2 metabolites contribute to the maximal activation of AMPK at high E2 concentrations. Indeed, the estrogen metabolite 2‐HE2, but not 2‐methoxyestradiol (2‐ME2), directly activated AMPK in C2C12 myotubes. Discussion: We propose a model where E2, acting through its metabolite 2‐HE2 and the estrogen receptors (ERs), activates AMPK in myotubes. Finally, activation is abolished when all E2 is metabolized to 2‐ME2.  相似文献   

8.
We have measured the three principal oxidative transformations of estradiol by means of a radiometric procedure in women with breast or endometrial cancer and in age matched controls. No difference between the 17β-o1 oxidation or 2-hydroxylation of the hormone was observed between the study groups. In contrast, 16α-hydroxylation was strikingly elevated in the women with breast and endometrial cancer relative to the age matched controls. Evidence is presented that this increased activity precedes the clinical evidence of the disease and that it represents a significant risk factor for these estrogen dependent tumors. This risk may be mediated by one of the products of 16α-hydroxylation, 16α-hydroxyestrone, which exhibits unique biological properties.  相似文献   

9.
In vivo experiments on strains of mice that differ in the risk of developing mammary cancer have demonstrated a correlation between the extent of 16 alpha-hydroxylation of estradiol and incidence of mammary cancer. The ability of human mammary terminal duct lobular unit (TDLU), the site of neoplastic transformation, to metabolize estradiol or to accumulate estradiol metabolites has not been unequivocally established. Using a newly developed human mammary TDLU explant culture system and a radiometric assay for estradiol metabolism, we compared the site-specific metabolism of estradiol by the 17-oxidation, 2-hydroxylation, and 16 alpha-hydroxylation pathways in noninvolved human mammary tissue. The relative extent of estradiol 16 alpha-hydroxylation was found to be increased in TDLU from patients in the luteal phase of the menstrual cycle in relation to either those from patients in the follicular phase or from postmenopausal subjects. This study demonstrates that TDLU can metabolize estradiol extrahepatically and that 16 alpha-hydroxylation in the target tissue is dependent on the phase of the menstrual cycle. Furthermore, the specific, risk-related increase in 16 alpha-hydroxylation suggests that intrinsic metabolic ability of the target tissue leading to the formation of 16 alpha-hydroxyestrone from estradiol may be a determinant in, or a marker for, the relative risk of developing mammary cancer.  相似文献   

10.
For identification of microsomal cytochrome P-450 (P-450) enzymes which catalyze 2- or 4-hydroxylations of estrogens in the rat liver, estradiol (E2) and estradiol 17-sulfate (E2-17-S) were selected as the substrates and incubated with various kinds of purified P-450 enzymes: PB-1, PB-2, PB-4 and PB-5 obtained from phenobarbital-treated male rats (Sprague-Dawley); MC-1 and MC-5 from 3-methylcholanthrene-treated male rats; and UT-1, UT-2, UT-4 and UT-5 from untreated animals. The reactions were carried out under the P-450-reconstructed system, and the resulting products were determined by HPLC using electrochemical detection. All the enzymes tested were shown to have varying degrees of catalytic activities for 2-hydroxylation of the two substrates; UT-1 and UT-2 had the highest activity. Of the induced P-450 enzymes, PB-2 and MC-1 showed fairly high catalytic activity for 4-hydroxylation of E2. The P-450 enzymes obtained from the untreated male rats, especially UT-4, showed the highest catalytic activity for 4-hydroxylation of the two substrates. From these results and also from kinetic experiments, the P-450 enzymes which catalyze 2- and 4-hydroxylations of estrogen were considered to be different species. A part of E2 was converted to such metabolites as estrone and those having a hydroxyl group at positions 6β, 15 or 16, each production of which was estimated to be catalyzed by single or multiple P-450s.  相似文献   

11.
The relationship between 17α-hydroxylation and 20-oxidation-reduction of progesterone and some of its derivatives was studied in yeast strains Saccharomyces cerevisiae YEp51α, Yarrowia lipolytica E129A15, and expressing cytochrome P450c17. The key metabolites were found to be 17α-hydroxyprogester-one and 17α,20(α,β)-dihydroxypregn-4-ene-3-ones. The bioconversion pathways of pregn-4-ene-20(α,β)-ol-3-ones were determined. They included cycles of 20-oxidation, 17α-hydroxylation, and stereospecific 20-reduction. The efficiency and kinetic parameters of steroid bioconversion by the recombinant strains were determined. The role of yeast analogs of mammalian steroid dehydrogenases is discussed. It was found that any of the desired derivatives, 17α-hydroxyprogesterone or progesterone 17α,20(α,β)-diols, could be obtained from progesterone. Cholesterol bioconversion yields important metabolites: steroid hormones, the vitamin-D group, and bile acids [1, 2]. Attention to various cytochrome-P450 species participating in the biosynthesis of mammalian steroid hormones is caused by two circumstances: (1) the necessity of detecting structural-function abnorm alities of some of the enzymes of steroid-synthesis that cause human diseases, and (2) the potential of regio-and stereospecific cytochrome P450 species of mammals in chemoenzymatic synthesis of pharmacologically valuable steroids. Concerning the second line of inquiry, the development of transgenic Saccharomyces cerevisiae yeast for the complete synthesis of cortisol by additional expression and elimination of a total of 13 genes was reported [3]. To increase the yield of the target compound, the genes for enzymes performing undesirable steroid modifications were inactivated. These modifications included esterification of pregnenolone [4] and 20α-reduction of 17α-hydroxyprogesterone [5]. A search for analogs of mammalian 20α-hydroxysteroid dehydrogenase (20α-HSD) in the Saccharomyces cerevisiae genome revealed two candidate proteins: Ypr1p (yeast aldo-keto reductase) and Gcy1p (yeast galactose-inducible crystallin-like protein) [3]. Indeed, it was formerly shown that expression of cytochrome P450 from bovine adrenal cortex, performing 17α-hydroxylation and the C17,20-lyase reaction (P450c17) in S. cerevisiae under the control of the GAL10-promoter with the presence of D-galactose as an inducer, was accompanied by the sequential conversion of progesterone to 17α-hydroxyprogesterone and 17α,20(α,β)-dihydroxypregn-4-ene-3-one with a high yield [5].  相似文献   

12.
The oxygenated-metabolite profiles of exogenous 17 beta-oestradiol (E2) in adult male and female Wistar rats have been characterized and major sex-dependent biotransformations observed which correlate with the regioselectivities of known sexually differentiated hepatic P450. [6,7-3H]E2 (27 micrograms/kg) was given i.v. The metabolites of E2 were rapidly and extensively excreted in bile (46 and 78% of the dose over 1 and 6 h, respectively). Female rats metabolized E2 by one major pathway: oxidation to oestrone (E1) followed by C-2 hydroxylation and O-methylation; the principal aglycones (0-1 h bile collections) were E1 (14%), 2-hydroxyE1 (2-OHE1) (42%) and 2-methoxyE1 (24%). Male rats metabolized E2 principally by two parallel composite pathways of E1 hydroxylation which yielded a complex mixture of mono- and di-oxygenated compounds: 15 alpha-OHE1 (33%), 2,15 alpha-diOHE1 (7%), and 2-methoxy-15 alpha OHE1 (14%); 16 alpha-OHE1 (13%), 2,16 alpha-diOHE1 (4%) and 2-methoxy-16 alpha-OHE1 (2%). 15 alpha-Hydroxylation was unique to males. The balance of aromatic and alkyl hydroxylation in males was dose-dependent: at 3 mg/kg, 15 alpha-hydroxylation was decreased approx. 50% in favour of 2-hydroxylation whilst 16 alpha-hydroxylation was largely unaffected. The male-specific 15 alpha-hydroxylation and male-predominant 16 alpha-hydroxylation of E1 derived from E2 in vivo may be ascribable to the male-specific isoforms P450IIC13 and P450IIC11, respectively.  相似文献   

13.
Epoxyeicosatrienoic acids (EET), the primary arachidonic acid metabolites of cytochrome P450 2J (CYP2J) epoxygenases, possess potent vasodilatory, anti-inflammatory, antiapoptotic, and mitogenic effects. To date, little is known about the role of CYP2J2 and EETs in tumor necrosis factor (TNF)-α-induced cardiac injury. We utilized cell culture and in vivo models to examine the effects of exogenously applied EETs or CYP2J2 overexpression on TNF-α-induced cardiac apoptosis and cardiac dysfunction. In neonatal rat cardiomyocytes, TNF-α-induced apoptosis was markedly attenuated by EETs or CYP2J2 overexpression, leading to significantly improved cell survival. Further studies showed that TNF-α decreased expression of the antiapoptotic proteins Bcl-2 and Bcl-xL, decreased IκBα and PPARγ, and also inhibited PI3K-dependent Akt and EGFR signaling. Both EETs and CYP2J2 overexpression reversed the effects of TNF-α on these pathways. Furthermore, overexpression of CYP2J2 in rats prevented the decline in cardiac function that is normally observed in TNF-α-challenged animals. These results demonstrate that EETs or CYP2J2 overexpression can prevent TNF-α-induced cardiac cell injury and cardiac dysfunction by inhibiting apoptosis, reducing inflammation, and enhancing PPARγ expression. Targeting the CYP2J2 epoxygenase pathway may represent a novel approach to mitigate cardiac injury in diseases such as heart failure, where increased TNF-α levels are known to occur.  相似文献   

14.
Kinetic studies of inhibition of estradiol 2- and 16 alpha-hydroxylase activities in male rat liver microsomes with 2-bromoestrogens, 4-bromo-estrone (4-BrE1), 16 alpha- and 16 beta-bromoestrones and 16 beta-acetylthioestrone (16-AcSE1) were carried out. 2-Bromoestrogens and 4-BrE1 nonspecifically blocked the two enzyme activities in a competitive manner, and 2-bromo-estradiol (2-BrE2) was the most potent inhibitor for the two hydroxylases among the 2- and 4-bromo steroids. Kinetic data, the apparent Ki's for the inhibitors and the apparent Km's for the substrate E2 in the assay, demonstrate that the A-ring bromo steroids are potent inhibitors for the two enzymes (Ki/Km ranging from 0.28 to 0.48 for the 2-hydroxylation and ranging from 0.26 to 0.49 for the 16 alpha-hydroxylation). In contrast, 16-bromoestrones and 16-AcSE1 non-competitively inhibited the 2-hydroxylation (Ki = ca. 70 microM) while the other was competitively blocked by them (Ki/Km ranging from 0.24 to 0.30). These 16-substituted steroids were very potent inhibitors for the 16 alpha-hydroxylase rather than the 2-hydroxylase and preferentially blocked the former.  相似文献   

15.
Cytochrome P450 4A/F (CYP4A/F) converts arachidonic acid (AA) to 20-HETE by ω-hydroxylation. The contribution of 20-HETE to the regulation of myogenic response, blood pressure, and mitogenic actions has been well summarized. This review focuses on the emerging role of 20-HETE in physiological and pathological vascularization. 20-HETE has been shown to regulate vascular smooth muscle cells (VSMC) and endothelial cells (EC) by affecting their proliferation, migration, survival, and tube formation. Furthermore, the proliferation, migration, secretion of proangiogenic molecules (such as HIF-1α, VEGF, SDF-1α), and tube formation of endothelial progenitor cells (EPC) are stimulated by 20-HETE. These effects are mediated through c-Src- and EGFR-mediated downstream signaling pathways, including MAPK and PI3K/Akt pathways, eNOS uncoupling, and NOX/ROS system activation. Therefore, the CYP4A/F-20-HETE system may be a therapeutic target for the treatment of abnormal angiogenic diseases.  相似文献   

16.
The comparative mitogenic activities of 17beta-estradiol (E2) and four metabolites, 2-hydroxyestradiol (2-OHE2), 2-hydroxyestrone (2-OHE1), 16alpha-hydroxyestradiol (16alpha-OHE2) and 16alpha-hydroxyestrone (16alpha-OHE1) were determined in estrogen receptor (ER)-positive MCF-7 and T47D human breast cancer cells. E2 (1 nM) induced a 7- to 13-fold increase in cell number in both cell lines compared to untreated cells and the mitogenic potencies of 16alpha-OHE1 or 16alpha-OHE2 were comparable to or greater than E2. In contrast, 2-OHE1 and 2-OHE2 were weak mitogens in both cell lines and in cells cotreated with 1 nM E2 and 100 or 1000 nM 2-OHE1 or 2-OHE2, there was a significant inhibition of hormone-induced cell proliferation. The comparative ER agonist/antagonist activities of E2 and the metabolites on transactivation were determined in T47D cells transiently transfected with constructs containing promoter inserts from the cathepsin D (pCD) and creatine kinase B (pCKB) genes. E2, 16alpha-OHE2 and 16alpha-OHE1 induced reporter gene activity in both MCF-7 or T47D cells transfected with pCKB or pCD. In contrast, 2-OHE1 and 2-OHE2 did not exhibit ER agonist activity for these transactivation assays, but in cells cotreated with E2 plus 2-OHE1 or 2-OHE2, there was a significant decrease in the hormone-induced response. These results demonstrate that 16alpha-OHE1/16alpha-OHE2 exhibit estrogenic activities similar to that observed for E2, whereas the 2-catecholestrogens are weak ER agonists (cell proliferation) or antagonists (cell proliferation and transactivation).  相似文献   

17.
The present study investigated the influence of the endogenous estradiol metabolite 2-methoxyestradiol (2ME) on the growth of methyl-nitroso-urea (MNU)-induced mammary carcinoma in the rat. 2ME was administered by means of subcutaneously implanted osmotic pumps for a period of 4 weeks. The dosages of 2ME were 1 and 5mg/kg per day, the control animals received saline. At the low dosage of 2ME a stimulation of tumor growth was observed, whereas at the high dosage an inhibition was found. The urinary excretion of 15 estradiol metabolites revealed that 2ME triggered strong changes in estrogen metabolism in the organism. Our data show that 2ME may elicit both stimulation and inhibition of tumor growth depending on the dosage used, a fact which should be considered in case of therapeutic use.  相似文献   

18.
In synovial cells of patients with osteoarthritis (OA) and rheumatoid arthritis (RA), conversion products of major anti-inflammatory androgens are as yet unknown but may be proinflammatory. Therefore, therapy with androgens in RA could be a problem. This study was carried out in order to compare conversion products of androgens in RA and OA synoviocytes. In 26 OA and 24 RA patients, androgen conversion in synovial cells was investigated using radiolabeled substrates and analysis by thin-layer chromatography and HPLC. Aromatase expression was studied by immunohistochemistry. Dehydroepiandrosterone (DHEA) was converted into androstenediol, androstenedione (ASD), 16αOH-DHEA, 7αOH-DHEA, testosterone, estrone (E1), estradiol (E2), estriol (E3), and 16αOH-testosterone (similar in OA and RA). Surprisingly, levels of E2, E3, and 16α-hydroxylated steroids were as high as levels of testosterone. In RA and OA, 5α-dihydrotestosterone increased conversion of DHEA into testosterone but not into estrogens. The second androgen, ASD, was converted into 5α-dihydro-ASD, testosterone, and negligible amounts of E1, E2, E3, or 16αOH-testosterone. 5α-dihydro-ASD levels were higher in RA than OA. The third androgen, testosterone, was converted into ASD, 5α-dihydro-ASD, 5α-dihydrotestosterone, and negligible quantities of E1 and E2. 5α-dihydrotestosterone was higher in RA than OA. ASD and testosterone nearly completely blocked aromatization of androgens. In addition, density of aromatase-positive cells and concentration of released E2, E3, and free testosterone from superfused synovial tissue was similar in RA and OA but estrogens were markedly higher than free testosterone. In conclusion, ASD and testosterone might be favorable anti-inflammatory compounds because they decrease aromatization and increase anti-inflammatory 5α-reduced androgens. In contrast, DHEA did not block aromatization but yielded high levels of estrogens and proproliferative 16α-hydroxylated steroids. Androgens were differentially converted to pro- and anti-inflammatory steroid hormones via diverse pathways.  相似文献   

19.
In female sheep, estradiol-dependent dopaminergic inhibition exerted by the A15 nucleus during long days (LD) results in a blockade of reproductive activity. This effect could involve the GnRH cell bodies or their terminals in the median eminence (ME). However, a vast majority of terminals of the A15 nucleus are located in neurohypophysis and only a few in the ME. Previously we demonstrated that tritiated dopamine (DA) was transferred from the venous blood of the cavernous sinus to the arterial blood supplying the brain. In the present paper, we tested the hypothesis that the transferred dopamine could reach further the brain and ME. Using isolated sheep heads harvested on short days vs. long days, we examined radioactivity in brain tissues following infusion of tritiated dopamine into the cavernous sinus. The experiment was performed in ovariectomized ewes treated with estradiol (E2) or vehicle. The mean level of radioactivity in brain was affected by season (p<0.001) and E2 (p<0.05) and was the highest during LD in E2-treated animals. In the next experiment on isolated sheep head we measured dopamine and its metabolites levels in blood and pituitary after infusion of non-radiolabeled dopamine. We observed an increase (p<0.01) in dopamine concentration in arterial blood but not in the brain. The pituitary was the only structure examined in which a tendency (p=0.06) towards increased dopamine concentration following dopamine infusion was observed. Thus, even if part of DA released from terminals within the posterior and intermediate lobes of the pituitary reaches the vessels of the ME through local vascular pathways, it is unlikely that it could affect the LHRH terminals located in ME. In addition, our results suggest that brain capillaries in the isolated head are able to maintain a functional blood brain barrier.  相似文献   

20.
In synovial cells of patients with osteoarthritis (OA) and rheumatoid arthritis (RA), conversion products of major anti-inflammatory androgens are as yet unknown but may be proinflammatory. Therefore, therapy with androgens in RA could be a problem. This study was carried out in order to compare conversion products of androgens in RA and OA synoviocytes. In 26 OA and 24 RA patients, androgen conversion in synovial cells was investigated using radiolabeled substrates and analysis by thin-layer chromatography and HPLC. Aromatase expression was studied by immunohistochemistry. Dehydroepiandrosterone (DHEA) was converted into androstenediol, androstenedione (ASD), 16alphaOH-DHEA, 7alphaOH-DHEA, testosterone, estrone (E1), estradiol (E2), estriol (E3), and 16alphaOH-testosterone (similar in OA and RA). Surprisingly, levels of E2, E3, and 16alpha-hydroxylated steroids were as high as levels of testosterone. In RA and OA, 5alpha-dihydrotestosterone increased conversion of DHEA into testosterone but not into estrogens. The second androgen, ASD, was converted into 5alpha-dihydro-ASD, testosterone, and negligible amounts of E1, E2, E3, or 16alphaOH-testosterone. 5alpha-dihydro-ASD levels were higher in RA than OA. The third androgen, testosterone, was converted into ASD, 5alpha-dihydro-ASD, 5alpha-dihydrotestosterone, and negligible quantities of E1 and E2. 5alpha-dihydrotestosterone was higher in RA than OA. ASD and testosterone nearly completely blocked aromatization of androgens. In addition, density of aromatase-positive cells and concentration of released E2, E3, and free testosterone from superfused synovial tissue was similar in RA and OA but estrogens were markedly higher than free testosterone. In conclusion, ASD and testosterone might be favorable anti-inflammatory compounds because they decrease aromatization and increase anti-inflammatory 5alpha-reduced androgens. In contrast, DHEA did not block aromatization but yielded high levels of estrogens and proproliferative 16alpha-hydroxylated steroids. Androgens were differentially converted to pro- and anti-inflammatory steroid hormones via diverse pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号