首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammals, two spatially and temporally distinct waves of fiber cell differentiation are crucial steps for normal lens development. In between these phases, an anterior growth zone forms in which progenitor cells migrate circumferentially, terminally exit the cell cycle and initiate differentiation at the lens equator. Much remains unknown about the molecular pathways orchestrating these processes. Previously, the Notch signal transduction pathway was shown to be critical for anterior lens progenitor cell growth and differentiation. However, the ligand or ligand(s) that direct these events are unknown. Using conditional gene targeting, we show that Jagged1 is required for lens fiber cell genesis, particularly that of secondary fiber cells. In the absence of Jagged1, the anterior growth and equatorial transition zones fail to develop fully, with only a handful of differentiated fiber cells present at birth. Adult Jagged1 conditional mutants completely lack lenses, along with severe anterior chamber deformities. Our data support the hypothesis that Jagged1-Notch signaling conveys a lateral inductive signal, which is indispensable for lens progenitor cell proliferation and differentiation.  相似文献   

2.
3.
The Notch signal transduction pathway regulates the decision to proliferate versus differentiate. Although there are a myriad of mouse models for the Notch pathway, surprisingly little is known about how these genes regulate early eye development, particularly in the anterior lens. We employed both gain-of-function and loss-of-function approaches to determine the role of Notch signaling in lens development. Here we analyzed mice containing conditional deletion of the Notch effector Rbpj or overexpression of the activated Notch1 intracellular domain during lens formation. We demonstrate distinct functions for Notch signaling in progenitor cell growth, fiber cell differentiation and maintenance of the transition zone. In particular, Notch signaling controls the timing of primary fiber cell differentiation and is essential for secondary fiber cell differentiation. Either gain or loss of Notch signaling leads to formation of a dysgenic lens, which in loss-of-function mice undergoes a profound postnatal degeneration. Our data suggest both Cyclin D1 and Cyclin D2, and the p27Kip1 cyclin-dependent kinase inhibitor act downstream of Notch signaling, and define multiple critical functions for this pathway during lens development.  相似文献   

4.
5.
6.
Radiation-induced bystander effects (RIBE) have been well demonstrated in whole organisms, as well as in single-cell culture models in vitro and multi-cellular tissues models in vitro, however, the underlying mechanisms remain unclear, including the temporal and spatial course of bystander signaling. The RIBE in vivo has been shown to exist in the model plant Arabidopsis thaliana (A. thaliana). Importantly, the unique plant grafting provides a delicate approach for studying the temporal and spatial course of bystander signaling in the context of whole plants. In our previous study, the time course of bystander signaling in plants has been well demonstrated using the root micro-grafting technique. In this study, we further investigated the temporal cooperation pattern of multiple bystander signals, the directionality of bystander signaling, and the effect of bystander tissues on the bystander signaling. The results showed that the bystander response could also be induced efficiently when the asynchronously generated bystander signals reached the bystander tissues in the same period, but not when they entered into the bystander tissues in an inversed sequence. The absence of bystander response in root-inversed grafting indicated that the bystander signaling along roots might be of directionality. The bystander signaling was shown to be independent of the bystander tissues.  相似文献   

7.
8.
Enhancer of rudimentary, e(r), encodes a small nuclear protein, ER, that has been implicated in the regulation of pyrimidine metabolism, DNA replication and cell proliferation. In Drosophila melanogaster, a new recessive Notch allele, Nnd-p, was isolated as a lethal in combination with an e(r) allele, e(r)p2. Both mutants are viable as single mutants. Nnd-p is caused by a P-element insertion in the 5′ UTR, 378-bp upstream of the start of translation. Together the molecular and genetic data argue that Nnd-p is a hypomorphic allele of N. The three viable notchoid alleles, Nnd-p, Nnd-1 and Nnd-3, are lethal in combination with e(r) alleles. Our present hypothesis is that e(r) is a positive regulator of the Notch signaling pathway and that the lethality of the N e(r) double mutants is caused by a reduction in the expression of the pathway. This is supported by the rescue of the lethality by a mutation in Hairless, a negative regulator of N, and by the synthetic lethality of dx e(r) double mutants. Further support for the hypothesis is a reduction in E(spl) expression in an e(r) mutant. Immunostaining localizes ER to the nucleus, suggesting a nuclear function for ER. A role in the Notch signaling pathway, suggests that e(r) may be expressed in the nervous system. This turns out to be the case, as immunostaining of ER shows that ER is localized to the developing CNS.  相似文献   

9.

Background

In conditions of nitrogen limitation, Saccharomyces cerevisiae strains differ in their fermentation capacities, due to differences in their nitrogen requirements. The mechanisms ensuring the maintenance of glycolytic flux in these conditions are unknown. We investigated the genetic basis of these differences, by studying quantitative trait loci (QTL) in a population of 133 individuals from the F2 segregant population generated from a cross between two strains with different nitrogen requirements for efficient fermentation.

Results

By comparing two bulks of segregants with low and high nitrogen requirements, we detected four regions making a quantitative contribution to these traits. We identified four polymorphic genes, in three of these four regions, for which involvement in the phenotype was validated by hemizygote comparison. The functions of the four validated genes, GCN1, MDS3, ARG81 and BIO3, relate to key roles in nitrogen metabolism and signaling, helping to maintain fermentation performance.

Conclusions

This study reveals that differences in nitrogen requirement between yeast strains results from a complex allelic combination. The identification of three genes involved in sensing and signaling nitrogen and specially one from the TOR pathway as affecting nitrogen requirements suggests a role for this pathway in regulating the fermentation rate in starvation through unknown mechanisms linking nitrogen signaling to glycolytic flux.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-495) contains supplementary material, which is available to authorized users.  相似文献   

10.
The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/β-catenin asymmetry pathway, plays a role in specifying temporal identities of seam cells. Loss of function of lit-1 suppresses defects in retarded heterochronic mutants and enhances defects in precocious heterochronic mutants. Overexpressing lit-1 causes heterochronic defects opposite to those in lit-1(lf) mutants. LIT-1 exhibits a periodic expression pattern in seam cells within each larval stage. The kinase activity of LIT-1 is essential for its role in the heterochronic pathway. lit-1 specifies the temporal fate of seam cells likely by modulating miRNA-mediated silencing of target heterochronic genes. We further show that loss of function of other components of Wnt signaling, including mom-4, wrm-1, apr-1, and pop-1, also causes heterochronic defects in sensitized genetic backgrounds. Our study reveals a novel function of Wnt signaling in controlling the timing of seam cell development in C. elegans.  相似文献   

11.
The development of stem cell daughters into the differentiated state normally requires a cascade of proliferation and differentiation steps that are typically regulated by external signals. The germline cells of most animals, in specific, are associated with somatic support cells and depend on them for normal development. In the male gonad of Drosophila melanogaster, germline cells are completely enclosed by cytoplasmic extensions of somatic cyst cells, and these cysts form a functional unit. Signaling from the germline to the cyst cells via the Epidermal Growth Factor Receptor (EGFR) is required for germline enclosure and has been proposed to provide a temporal signature promoting early steps of differentiation. A temperature-sensitive allele of the EGFR ligand Spitz (Spi) provides a powerful tool for probing the function of the EGRF pathway in this context and for identifying other pathways regulating cyst differentiation via genetic interaction studies. Using this tool, we show that signaling via the Ecdysone Receptor (EcR), a known regulator of developmental timing during larval and pupal development, opposes EGF signaling in testes. In spi mutant animals, reducing either Ecdysone synthesis or the expression of Ecdysone signal transducers or targets in the cyst cells resulted in a rescue of cyst formation and cyst differentiation. Despite of this striking effect in the spi mutant background and the expression of EcR signaling components within the cyst cells, activity of the EcR pathway appears to be dispensable in a wildtype background. We propose that EcR signaling modulates the effects of EGFR signaling by promoting an undifferentiated state in early stage cyst cells.  相似文献   

12.
We have identified the RNA-binding protein Hermes in a screen for vegetally localized RNAs in Xenopus oocytes. The RNA localizes to the vegetal cortex through both the message transport organizer (METRO) and late pathways. Hermes mRNA and protein are both detected at the vegetal cortex of the oocyte; however, the protein is degraded within a several hour period during oocyte maturation. Injection of antisense morpholino oligonucleotides (HE-MO) against Hermes caused a precocious reduction in Hermes protein present during maturation and resulted in a phenotype characterized by cleavage defects in vegetal blastomeres. The phenotype can be partially rescued by injecting Hermes mRNA. These results demonstrate that the localized RNA-binding protein Hermes functions during oocyte maturation to regulate the cleavage of specific vegetally derived cell lineages. Hermes most likely performs its function by regulating the translation or processing of one or more target RNAs. This is an important mechanism by which the embryo can generate unique cell lineages. The regulation of region-specific cell division is a novel function for a localized mRNA.  相似文献   

13.

Background and Aims

The maize lrt1 (lateral rootless1) mutant is impaired in its development of lateral roots during early post-embryonic development. The aim of this study was to characterize, in detail, the influences that the mutation exerts on lateral root initiation and the subsequent developments, as well as to describe the behaviour of the entire plant under variable environmental conditions.

Methods

Mutant lrt1 plants were cultivated under different conditions of hydroponics, and in between sheets of moist paper. Cleared whole mounts and anatomical sections were used in combination with both selected staining procedures and histochemical tests to follow root development. Root surface permeability tests and the biochemical quantification of lignin were performed to complement the structural data.

Key Results

The data presented suggest a redefinition of lrt1 function in lateral roots as a promoter of later development; however, neither the complete absence of lateral roots nor the frequency of their initiation is linked to lrt1 function. The developmental effects of lrt1 are under strong environmental influences. Mutant primordia are affected in structure, growth and emergence; and the majority of primordia terminate their growth during this last step, or shortly thereafter. The lateral roots are impaired in the maintenance of the root apical meristem. The primary root shows disturbances in the organization of both epidermal and subepidermal layers. The lrt1-related cell-wall modifications include: lignification in peripheral layers, the deposition of polyphenolic substances and a higher activity of peroxidase.

Conclusions

The present study provides novel insights into the function of the lrt1 gene in root system development. The lrt1 gene participates in the spatial distribution of initiation, but not in its frequency. Later, the development of lateral roots is strongly affected. The effect of the lrt1 mutation is not as obvious in the primary root, with no influences observed on the root apical meristem structure and maintenance; however, development of the epidermis and cortex are impaired.  相似文献   

14.
15.
Background and Aims Strigolactones (SLs) and their derivatives are plant hormones that have recently been identified as regulating root development. This study examines whether SLs play a role in mediating production of adventious roots (ARs) in rice (Oryza sativa), and also investigates possible interactions between SLs and auxin.Methods Wild-type (WT), SL-deficient (d10) and SL-insensitive (d3) rice mutants were used to investigate AR development in an auxin-distribution experiment that considered DR5::GUS activity, [3H] indole-3-acetic acid (IAA) transport, and associated expression of auxin transporter genes. The effects of exogenous application of GR24 (a synthetic SL analogue), NAA (α-naphthylacetic acid, exogenous auxin) and NPA (N-1-naphthylphalamic acid, a polar auxin transport inhibitor) on rice AR development in seedlings were investigated.Key Results The rice d mutants with impaired SL biosynthesis and signalling exhibited reduced AR production compared with the WT. Application of GR24 increased the number of ARs and average AR number per tiller in d10, but not in d3. These results indicate that rice AR production is positively regulated by SLs. Higher endogenous IAA concentration, stronger expression of DR5::GUS and higher [3H] IAA activity were found in the d mutants. Exogenous GR24 application decreased the expression of DR5::GUS, probably indicating that SLs modulate AR formation by inhibiting polar auxin transport. The WT and the d10 and d3 mutants had similar expression of DR5::GUS regardless of exogenous application of NAA or NPA; however, AR number was greater in the WT than in the d mutants.Conclusions The results suggest that AR formation is positively regulated by SLs via the D3 response pathway. The positive effect of NAA application and the opposite effect of NPA application on AR number of WT plants also suggests the importance of auxin for AR formation, but the interaction between auxin and SLs is complex.  相似文献   

16.
17.

Background and Aims

Adventitious roots (ARs) are part of the root system in numerous plants, and are required for successful micropropagation. In the Arabidopsis thaliana primary root (PR) and lateral roots (LRs), the quiescent centre (QC) in the stem cell niche of the meristem controls apical growth with the involvement of auxin and cytokinin. In arabidopsis, ARs emerge in planta from the hypocotyl pericycle, and from different tissues in in vitro cultured explants, e.g. from the stem endodermis in thin cell layer (TCL) explants. The aim of this study was to investigate the establishment and maintenance of the QC in arabidopsis ARs, in planta and in TCL explants, because information about this process is still lacking, and it has potential use for biotechnological applications.

Methods

Expression of PR/LR QC markers and auxin influx (LAX3)/efflux (PIN1) genes was investigated in the presence/absence of exogenous auxin and cytokinin. Auxin was monitored by the DR5::GUS system and cytokinin by immunolocalization. The expression of the auxin-biosynthetic YUCCA6 gene was also investigated by in situ hybridization in planta and in AR-forming TCLs from the indole acetic acid (IAA)-overproducing superroot2-1 mutant and its wild type.

Key Results

The accumulation of auxin and the expression of the QC marker WOX5 characterized the early derivatives of the AR founder cells, in planta and in in vitro cultured TCLs. By determination of PIN1 auxin efflux carrier and LAX3 auxin influx carrier activities, an auxin maximum was determined to occur at the AR tip, to which WOX5 expression was restricted, establishing the positioning of the QC. Cytokinin caused a restriction of LAX3 and PIN1 expression domains, and concomitantly the auxin biosynthesis YUCCA6 gene was expressed in the apex.

Conclusions

In ARs formed in planta and TCLs, the QC is established in a similar way, and auxin transport and biosynthesis are involved through cytokinin tuning.  相似文献   

18.
Endo I  Tange T  Osawa H 《Annals of botany》2011,108(2):279-290

Background and Aims

Root caps release border cells, which play central roles in microbe interaction and root protection against soil stresses. However, the number and connectivity of border cells differ widely among plant species. Better understanding of key border-cell phenotype across species will help define the total function of border cells and associated genes.

Methods

The spatio-temporal detachment of border cells in the leguminous tree Acacia mangium was investigated by using light and fluorescent microscopy with fluorescein diacetate, and their number and structural connectivity compared with that in soybean (Glycine max).

Key Results

Border-like cells with a sheet structure peeled bilaterally from the lateral root cap of A. mangium. Hydroponic root elongation partially facilitated acropetal peeling of border-like cells, which accumulate as a sheath that covers the 0- to 4-mm tip within 1 week. Although root elongation under friction caused basipetal peeling, lateral root caps were minimally trimmed as compared with hydroponic roots. In the meantime, A. mangium columella caps simultaneously released single border cells with a number similar to those in soybean.

Conclusions

These results suggest that cell type-specific inhibitory factors induce a distinct defective phenotype in single border-cell formation in A. mangium lateral root caps.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号