首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tyrosine hydroxylase (TH; EC 1.14.16.2) is a rate-limiting enzyme in the dopamine synthesis and important for the central dopaminergic system, which controls voluntary movements and reward-dependent behaviors. Here, to further explore the regulatory mechanism of dopamine levels by TH in adult mouse brains, we employed a genetic method to inactivate the Th gene in the nigrostriatal projection using the Cre-loxP system. Stereotaxic injection of adeno-associated virus expressing Cre recombinase (AAV-Cre) into the substantia nigra pars compacta (SNc), where dopaminergic cell bodies locate, specifically inactivated the Th gene. Whereas the number of TH-expressing cells decreased to less than 40% in the SNc 2 weeks after the AAV-Cre injection, the striatal TH protein level decreased to 75%, 50%, and 39% at 2, 4, and 8 weeks, respectively, after the injection. Thus, unexpectedly, the reduction of TH protein in the striatum, where SNc dopaminergic axons innervate densely, was slower than in the SNc. Moreover, despite the essential requirement of TH for dopamine synthesis, the striatal dopamine contents were only moderately decreased, to 70% even 8 weeks after AAV-Cre injection. Concurrently, in vivo synthesis activity of l-dihydroxyphenylalanine, the dopamine precursor, per TH protein level was augmented, suggesting up-regulation of dopamine synthesis activity in the intact nigrostriatal axons. Collectively, our conditional Th gene targeting method demonstrates two regulatory mechanisms of TH in axon terminals for dopamine homeostasis in vivo: local regulation of TH protein amount independent of soma and trans-axonal regulation of apparent L-dihydroxyphenylalanine synthesis activity per TH protein.  相似文献   

2.
A Louilot  M Le Moal  H Simon 《Life sciences》1987,40(20):2017-2024
Buspirone is a non-benzodiazepine drug with anxiolytic properties. It has been reported to induce a marked increase in the metabolism of dopamine in the striatum and the nucleus accumbens which is similar to that induced by neuroleptics. It has been suggested that the effect observed in the striatum reflects an action of buspirone on dopaminergic autoreceptors in both terminals and cell bodies. In the present study, presynaptic effects of buspirone on dopaminergic metabolism in the nucleus accumbens were investigated, and they were compared to the effects of the classical neuroleptic, haloperidol. Dopaminergic terminals were isolated by infusion of tetrodotoxin into the median forebrain bundle in order to evaluate the effects of buspirone and haloperidol on presynaptic receptors. Changes in dopamine metabolism were determined by in vivo voltammetry. Buspirone administered after interruption of the impulse flow did not affect dopamine metabolism. In contrast haloperidol treatment led to an increase in metabolism of dopamine. It is concluded that buspirone did not act at the presynaptic level and furthermore on dopaminergic autoreceptors.  相似文献   

3.
The substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) are the two major mesencephalic dopaminergic systems. Mesencephalic dopamine denervation is followed by long-term modifications in striatum and cortex that preserve dopamine functions. Here, we have studied the impact of isolated bilateral 6-hydroxydopamine lesioning of the SNc or the VTA on D(1) and D(2) dopamine receptor binding in striatal and cortical areas of rat. Neither SNc nor VTA bilateral partial lesioning changed D(2) binding at the striatal or cortical level. Intriguingly, only VTA lesioning increased D(1) binding in the cortex, whereas both bilateral partial lesioning of the SNc or the VTA increased striatal D(1) binding. This suggests that increased cortical D(1) binding could be an indicator of VTA lesioning. Further behavioural experiments may explain the pathophysiological meaning of increased cortical D(1) binding, and determine whether this observation is involved in compensatory mechanisms.  相似文献   

4.
Swiss mice were given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 25 mg/kg/day, for 5 consecutive days and killed at different days after MPTP discontinuance. Decreases in striatal tyrosine hydroxylase activity and levels of dopamine and its metabolites were observed 1 day after MPTP discontinuance. Ascorbic acid and glutamate levels had increased, dehydroascorbic acid and GSH decreased, whereas catabolites of high-energy phosphates (inosine, hypoxanthine, xanthine, and uric acid) were unchanged. In addition, gliosis was observed in both striatum and substantia nigra compacta (SNc). Sections of SNc showed some terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling (TUNEL)-positive cells. Neurochemical parameters of dopaminergic activity showed a trend toward recovery 3 days after MPTP discontinuance. At this time point, TUNEL-positive cells were detected in SNc; some of them showed nuclei with neuronal morphology. A late (days 6-11) increase in striatal dopamine oxidative metabolism, ascorbic acid oxidative status, and catabolites of high-energy phosphates were observed concomitant with nigral neuron and nigrostriatal glial cell apoptotic death, as revealed by TUNEL, acridine orange, and Hoechst staining, and transmission electron microscopy. These data suggest that MPTP-induced activation/apoptotic death of glial cells plays a key role in the sequential linkage of neurochemical and cellular events leading to dopaminergic nigral neuron apoptotic death.  相似文献   

5.
The aim of this study was to investigate further the hormone-dependent processes underlying sex differences in neurotoxic responses within the rat nigrostriatal dopaminergic (NSDA) pathway after partial lesioning with 6-OHDA, a state thought to mimic the early stages of Parkinson's disease where, in humans and animal models alike, males appear to be more susceptible. Contrary to our hypotheses, hormone manipulations (gonadectomy +/- oestrogen or androgen treatment) failed to alter survival of tyrosine hydroxylase immunoreactive cells in the substantia nigra pars compacta (SNc) after lesioning; this indicates that, unlike inherent sex differences in toxin-induced striatal dopamine depletion, sex differences in cell loss were not hormonally generated, and that hormone-dependent changes in dopamine depletion can occur independently of cell survival. In addition, hormonally induced changes in striatal expression of the dopamine transporter (DAT), an important factor for 6-OHDA toxicity, did not correlate with hormonal influences on striatal dopamine loss and, in males, central inhibition of aromatase prior to 6-OHDA infusion exacerbated striatal dopamine loss with no effect on SNc tyrosine hydroxylase-immunoreactive survival, suggesting locally generated oestrogen is neuroprotective. These results support the novel view that sex steroid hormones produced peripherally and centrally play a significant, sex-specific role within the sexually dimorphic NSDA pathway to modulate plastic, compensatory responses aimed at restoring striatal dopamine functionality, without affecting cell loss.  相似文献   

6.
Fetal antigen 1/delta-like 1 homologue (FA1/dlk1) belongs to the epidermal growth factor superfamily and is considered to be a non-canonical ligand for the Notch receptor. Interactions between Notch and its ligands are crucial for the development of various tissues. Moreover, FA1/dlk1 has been suggested as a potential supplementary marker of dopaminergic neurons. The present study aimed at investigating the distribution of FA1/dlk1-immunoreactive (-ir) cells in the early postnatal and adult midbrain as well as in the nigrostriatal system of 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian adult rats. FA1/dlk1-ir cells were predominantly distributed in the substantia nigra (SN) pars compacta (SNc) and in the ventral tegmental area. Interestingly, the expression of FA1/dlk1 significantly increased in tyrosine hydroxylase (TH)-ir cells during early postnatal development. Co-localization and tracing studies demonstrated that FA1/dlk1-ir cells in the SNc were nigrostriatal dopaminergic neurons, and unilateral 6-OHDA lesions resulted in loss of both FA1/dlk1-ir and TH-ir cells in the SNc. Surprisingly, increased numbers of FA1/dlk1-ir cells (by 70%) were detected in dopamine-depleted striata as compared to unlesioned controls. The higher number of FA1/dlk1-ir cells was likely not due to neurogenesis as colocalization studies for proliferation markers were negative. This suggests that FA1/dlk1 was up-regulated in intrinsic cells in response to the 6-OHDA-mediated loss of FA1/dlk1-expressing SNc dopaminergic neurons and/or due to the stab wound. Our findings hint to a significant role of FA1/dlk1 in the SNc during early postnatal development. The differential expression of FA1/dlk1 in the SNc and the striatum of dopamine-depleted rats could indicate a potential involvement of FA1/dlk1 in the cellular response to the degenerative processes.  相似文献   

7.
The microinfusion of low doses of apomorphine into the striatum of anesthetized rats depressed the electrical activity of the neurons of the substantia nigra pars compacta while the infusion of bromocriptine had an excitatory or inhibitory effect. These data suggest that:1) the action of the two dopamine agonists on the striato-nigral pathway is different; 2) the striatum might contain dopaminergic receptors located on cells projecting to the substantia nigra with different roles in the feedback regulation of the latter; 3) the inhibitory action of systemically injected apomorphine is not simply due to a stimulation of dopamine “autoreceptors” but also to an action mediated by fibers descending from the striatum to the substantia nigra.  相似文献   

8.
9.
Clinical symptoms of Parkinson's disease only become evident after 70-80% reductions in striatal dopamine. To investigate the importance of pre-synaptic dopaminergic mechanisms in this compensation, we determined the effect of nigrostriatal damage on dopaminergic markers and function in primates. MPTP treatment resulted in a graded dopamine loss with moderate to severe declines in ventromedial striatum (approximately 60-95%) and the greatest reductions (approximately 95-99%) in dorsolateral striatum. A somewhat less severe pattern of loss was observed for striatal nicotinic receptor, tyrosine hydroxylase and vesicular monoamine transporter expression. Declines in striatal dopamine uptake and transporter sites were also less severe than the reduction in dopamine levels, with enhanced dopamine turnover in the dorsolateral striatum after lesioning. The greatest degree of adaptation occurred for nicotine-evoked [(3)H]dopamine release from striatal synaptosomes, which was relatively intact in ventromedial striatum after lesioning, despite > 50% declines in dopamine. This maintenance of evoked release was not due to compensatory alterations in nicotinic receptor characteristics. Rather, there appeared to be a generalized preservation of release processes in ventromedial striatum, with K(+)-evoked release also near control levels after lesioning. These combined compensatory mechanisms help explain the finding that Parkinson's disease symptomatology develops only with major losses of striatal dopamine.  相似文献   

10.

Background

Non-motor symptoms (e.g., depression, anxiety, and cognitive deficits) in patients with Parkinson disease (PD) precede the onset of the motor symptoms. Although these symptoms do not respond to pharmacological dopamine replacement therapy, their precise pathological mechanisms are currently unclear. The present study was undertaken to examine whether the unilateral 6-hydroxydopamine (6-OHDA) lesion to the substantia nigra pars compacta (SNc), which represents a model of long-term dopaminergic neurotoxicity, could affect cell proliferation in the adult rat brain. Furthermore, we examined the effects of the selective serotonin reuptake inhibitor (SSRI) fluoxetine and the selective noradrenaline reuptake inhibitor maprotiline on the reduction in cell proliferation in the subgranular zone (SGZ) by the unilateral 6-OHDA lesion.

Methodology/Principal Findings

A single unilateral injection of 6-OHDA into the rat SNc resulted in an almost complete loss of tyrosine hydroxylase (TH) immunoreactivity in the striatum and SNc, as well as in reductions of TH-positive cells and fibers in the ventral tegmental area (VTA). On the other hand, an injection of vehicle alone showed no overt change in TH immunoreactivity. A unilateral 6-OHDA lesion to SNc significantly decreased cell proliferation in the SGZ ipsilateral to the 6-OHDA lesion, but not in the contralateral SGZ or the subventricular zone (SVZ), of rats. Furthermore, subchronic (14 days) administration of fluoxetine (5 mg/kg/day), but not maprotiline significantly attenuated the reduction in cell proliferation in the SGZ by unilateral 6-OHDA lesion.

Conclusions/Significance

The present study suggests that cell proliferation in the SGZ of the dentate gyrus might be, in part, under dopaminergic control by SNc and VTA, and that subchronic administration of fluoxetine reversed the reduction in cell proliferation in the SGZ by 6-OHDA. Therefore, SSRIs such as fluoxetine might be potential therapeutic drugs for non-motor symptoms as well as motor symptoms in patients with PD, which might be associated with the reduction in cell proliferation in the SGZ.  相似文献   

11.
We investigated the effect of an injection of 6-hydroxydopamine (6-OHDA) into the rat medial forebrain bundle (MFB) on the degeneration and the function of the dopaminergic cell bodies in the substantia nigra (SN) 3 and 5 weeks after lesioning. After injection of 6-OHDA into the MFB a complete loss of dopamine content was apparent in the striatum 3 weeks after lesioning. In the SN the amount of tyrosine hydroxylase-immunoreactive dopamine cells decreased gradually, with a near-complete lesion (> 90%) obtained only after 5 weeks, indicating that neurodegeneration of the nigral cells was still ongoing when total dopamine denervation of the striatum had already been achieved. Baseline dialysate and extracellular dopamine levels in the SN, as determined by in vivo microdialysis, were not altered by the lesion. A combination of compensatory changes of the remaining neurones and dopamine originating from the ventral tegmental area may maintain extracellular dopamine at near-normal levels. In both intact and lesioned rats, the somatodendritic release was about 60% tetrodotoxin (TTX) dependent. Possibly two pools contribute to the basal dopamine levels in the SN: a fast sodium channel-dependent portion and a TTX-insensitive one originating from diffusion of dopamine. Amphetamine-evoked dopamine release and release after injection of the selective dopamine reuptake blocker GBR 12909 were attenuated after a near-complete denervation of the SN (5 weeks after lesioning). So, despite a 90% dopamine cell loss in the SN 5 weeks after an MFB lesion, extracellular dopamine levels in the SN are kept at near-normal levels. However, the response to a pharmacological challenge is severely disrupted.  相似文献   

12.
Recent studies indicate that dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) convey distinct signals. To explore this difference, we comprehensively identified each area's monosynaptic inputs using the rabies virus. We show that dopamine neurons in both areas integrate inputs from a more diverse collection of areas than previously thought, including autonomic, motor, and somatosensory areas. SNc and VTA dopamine neurons receive contrasting excitatory inputs: the former from the somatosensory/motor cortex and subthalamic nucleus, which may explain their short-latency responses to salient events; and the latter from the lateral hypothalamus, which may explain their involvement in value coding. We demonstrate that neurons in the striatum that project directly to dopamine neurons form patches in both the dorsal and ventral striatum, whereas those projecting to GABAergic neurons are distributed in the matrix compartment. Neuron-type-specific connectivity lays a foundation for studying how dopamine neurons compute outputs.  相似文献   

13.
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by loss of neurons in the substantia nigra that project to the striatum and release dopamine. The cause of PD remains uncertain, however, evidence implicates mitochondrial dysfunction and oxidative stress. Although most cases of PD are sporadic, 5-10% of cases are caused by inherited mutations. Loss-of-function mutations in Parkin and DJ-1 were the first to be linked to recessively inherited Parkinsonism. Surprisingly, mice bearing similar loss-of-function mutations in Parkin and DJ-1 do not show age-dependent loss of nigral dopaminergic neurons or depletion of dopamine in the striatum. Although the normal cellular functions of Parkin and DJ-1 are not fully understood, we hypothesized that loss-of-function mutations in Parkin and DJ-1 render cells more sensitive to mitochondrial dysfunction and oxidative stress. To test this hypothesis, we crossed mice deficient for Parkin and DJ-1 with mice deficient for the mitochondrial antioxidant protein Mn-superoxide dismutase (SOD2) or the cytosolic antioxidant protein Cu-Zn-superoxide dismutase (SOD1). Aged Parkin -/- DJ-1 -/- and Mn-superoxide dismutase triple deficient mice have enhanced performance on the rotorod behavior test. Cu/Zn-superoxide dismutase triple deficient mice have elevated levels of dopamine in the striatum in the absence of nigral cell loss. Our studies demonstrate that on a Parkin/DJ-1 null background, mice that are also deficient for major antioxidant proteins do not have progressive loss of dopaminergic neurons but have behavioral and striatal dopamine abnormalities.  相似文献   

14.
Trefoil factor 1 (TFF1) belongs to a family of secreted peptides with a characteristic tree-looped trefoil structure. TFFs are mainly expressed in the gastrointestinal tract where they play a critical role in the function of the mucosal barrier. TFF1 has been suggested as a neuropeptide, but not much is known about its expression and function in the central nervous system. We investigated the expression of TFF1 in the developing and adult rat midbrain. In the adult ventral mesencephalon, TFF1-immunoreactive (-ir) cells were predominantly found in the substantia nigra pars compacta (SNc), the ventral tegmental area (VTA) and in periaqueductal areas. While around 90% of the TFF1-ir cells in the SNc co-expressed tyrosine hydroxylase (TH), only a subpopulation of the TH-ir neurons expressed TFF1. Some TFF1-ir cells in the SNc co-expressed the calcium-binding proteins calbindin or calretinin and nearly all were NeuN-ir confirming a neuronal phenotype, which was supported by lack of co-localization with the astroglial marker glial fibrillary acidic protein (GFAP). Interestingly, at postnatal (P) day 7 and P14, a significantly higher proportion of TH-ir neurons in the SNc co-expressed TFF1 as compared to P21. In contrast, the proportion of TFF1-ir cells expressing TH remained unchanged during postnatal development. Furthermore, significantly more TH-ir neurons expressed TFF1 in the SNc, compared to the VTA at all four time-points investigated. Injection of the tracer fluorogold into the striatum of adult rats resulted in retrograde labeling of several TFF1 expressing cells in the SNc showing that a significant fraction of the TFF1-ir cells were projection neurons. This was also reflected by unilateral loss of TFF1-ir cells in SNc of 6-hydroxylase-lesioned hemiparkinsonian rats. In conclusion, we show for the first time that distinct subpopulations of midbrain dopaminergic neurons express TFF1, and that this expression pattern is altered in a rat model of Parkinson’s disease.  相似文献   

15.
The striatum receives massive dopaminergic projections from neurons in the ventral tegmental area, the substantia nigra and the retro-rubral cell group. Dopaminergic neurons in the arcuate nucleus and periventricular hypothalamic nuclei project to the median eminence and the neuro-intermediate lobe of the pituitary gland. The anterior lobe of the pituitary gland is not innervated by dopaminergic neurons, but receives dopamine via a vascular route from the median eminence. Two categories of dopamine receptors (D-1 and D-2) can be identified on the basis of the ability of various drugs to discriminate between these two entities. Dopamine stimulates both D-1 and D-2 receptors. The affinity of dopamine for the D-2 receptor is approximately 1000 times higher than for the D-1 receptor. Dopamine is involved in synaptic as well as non-synaptic communication. Examples of non-synaptic communication via D-2 receptors are the dopamine induced inhibition of prolactin release from the anterior pituitary gland and most likely the D-2 receptor mediated inhibition of the release of acetylcholine in the striatum. Examples of synaptic communication have been found in the striatum where (with ultrastructural techniques) synaptic contacts between dopaminergic nerve terminals and elements from cells containing GABA, substance P or enkephalin have been demonstrated. It is tempting to speculate that synaptic and non-synaptic communication occurs via D-1 and D-2 receptors respectively.  相似文献   

16.
Dopaminergic neurons that project to the striatum from the substantia nigra are thought to modulate methionine-enkephalin (Met-Enk) metabolism in the striatum. We administered a dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) that produces a moderate depletion of dopamine in striatum, about 50%, without overt motor deficits, and found that Met-Enk-like immunoreactivity and preproenkephalin mRNA content increased in the tissue. Pretreatment with the monoamine oxidase B inhibitor deprenyl or the dopamine transport blocker nomifensine prevented these changes, suggesting that the changes were related to the partial loss of dopaminergic neurons rather than to MPTP. Moreover, administering GM1 ganglioside, which partially restores the MPTP-induced dopaminergic deficit, partially corrected the Met-Enk changes in the striatum as well. These findings are consistent with the hypothesis that dopaminergic input to the striatum, in part, modulates Met-Enk metabolism. Moreover, they show that moderate nigrostriatal lesions are sufficient to elevate Met-Enk and preproenkephalin mRNA contents and that restoration of dopaminergic function, as in our studies with GM1 ganglioside, restores the content of Met-Enk.  相似文献   

17.
We investigated the survival and the possible differentiation fate of the progenitors and immature neurons in the pars compacta of the substantia nigra (SNc) by intranigral injection of a glial cell line-derived neurotropic factor (GDNF) or glial cell line-derived neurotropic factor plus epidermal growth factor (EGF + GDNF) in 6-hydroxydopamine (6-OHDA)-lesioned rats. First, we performed behavioral tests by postural asymmetry and forelimb akinesia on the rats injected with 6-OHDA in striatum at day 7, and selected the qualified model according to the results. Then, intranigral GDNF or EGF + GDNF treatment was administered in the qualified PD model rats. On day 21, behavioral tests were performed with these rats; and then the rats were sacrificed for analyses of β-tubulin isotype-III (Tuj1), nestin, glial fibrillary acidic protein (GFAP), and tyrosine hydroxylase (TH) by immunohistochemistry and Western blotting. The results indicated that GDNF could promote the survival of the progenitor cells and immature neurons in rat SNc following 6-OHDA lesion. Moreover, EGF is capable of enhancing the survival effect of GDNF on the progenitor cells and immature neurons in SNc. On day 21, rapid functional recovery from the lesion-induced behavioral asymmetries was observed in the GDNF or EGF + GDNF-treated rats, and the numbers of TH-positive neurons increased in SNc, suggesting that the rats might generate new dopaminergic neurons. Thus, our study provides the new insight that the progenitors and immature neurons in SNc of 6-OHDA-lesioned rats might be able to differentiate toward the dopaminergic neurons fate subsequent to treatment with GDNF or EGF + GDNF.  相似文献   

18.
We examined the effect of pioglitazone, a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist of the thiazolidinedione class, on dopaminergic nerve cell death and glial activation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. The acute intoxication of C57BL/6 mice with MPTP led to nigrostriatal injury, as determined by tyrosine hydroxylase (TH) immunocytochemistry, and HPLC detection of striatal dopamine and metabolites. Damage to the nigrostriatal dopamine system was accompanied by a transient activation of microglia, as determined by macrophage antigen-1 (Mac-1) and inducible nitric oxide synthase (iNOS) immunoreactivity, and a prolonged astrocytic response. Orally administered pioglitazone (approximately 20 mg/kg/day) attenuated the MPTP-induced glial activation and prevented the dopaminergic cell loss in the substantia nigra pars compacta (SNpc). In contrast, there was little reduction of MPTP-induced dopamine depletion, with no detectable effect on loss of TH immunoreactivity and glial response in the striatum of pioglitazone-treated animals. Low levels of PPARgamma expression were detected in the ventral mesencephalon and striatum, and were unaffected by MPTP or pioglitazone treatment. Since pioglitazone affects primarily the SNpc in our model, different PPARgamma-independent mechanisms may regulate glial activation in the dopaminergic terminals compared with the dopaminergic cell bodies after acute MPTP intoxication.  相似文献   

19.
D-2 dopamine autoreceptor selective drugs: do they really exist?   总被引:3,自引:0,他引:3  
The catecholamine dopamine plays an important role as a neurotransmitter or neurohormone in the brain and pituitary gland. Dopamine exerts its effects through activation of two types of receptors called D-1 and D-2. These receptors are distinguished by their different pharmacological characteristics and signal transduction mechanism(s). Release of dopamine inhibits the activity of dopaminergic neurons through activation of so-called dopamine autoreceptors which are of the D-2 type. In general, these receptors occur both in the soma-dendritic region of the dopaminergic neuron, where they are involved in the inhibition of the firing rate and on the dopaminergic terminals where they mediate the inhibition of dopamine synthesis and release. D-2 receptors occur also on the target cells of dopaminergic neurons both in the brain (postsynaptic D-2 receptors) and pituitary gland. On the basis of data gathered from in vivo (behavioral- as well as electrophysiological) studies it has been concluded that D-2 agonists are much more potent at dopamine autoreceptors as compared to postsynaptic D-2 receptors, indicating the possibility of a pharmacological distinction between these differentially located D-2 receptors. This concept led to the introduction of a whole group of drugs allegedly displaying a selective agonist profile at the dopamine autoreceptor. In contrast, biochemical (in vitro) studies with brain tissue as well as the pituitary gland, did not reveal any significant difference between the pharmacological profiles of autoreceptors and postsynaptic D-2 receptors. In the present minireview a balanced discussion is presented of these in vivo and in vitro findings and it is concluded that both autoreceptors as well as postsynaptic D-2 receptors are similar if not identical entities.  相似文献   

20.
VMAT2 and dopamine neuron loss in a primate model of Parkinson's disease   总被引:2,自引:0,他引:2  
We used positron emission tomography (PET) to measure the earliest change in dopaminergic synapses and glial cell markers in a chronic, low-dose MPTP non-human primate model of Parkinson's disease (PD). In vivo levels of dopamine transporters (DAT), vesicular monoamine transporter-type 2 (VMAT2), amphetamine-induced dopamine release (AMPH-DAR), D2-dopamine receptors (D2R) and translocator protein 18 kDa (TSPO) were measured longitudinally in the striatum of MPTP-treated animals. We report an early (2 months) decrease (46%) of striatal VMAT2 in asymptomatic MPTP animals that preceded changes in DAT, D2R, and AMPH-DAR and was associated with increased TSPO levels indicative of a glial response. Subsequent PET studies showed progressive loss of all pre-synaptic dopamine markers in the striatum with expression of parkinsonism. However, glial cell activation did not track disease progression. These findings indicate that decreased VMAT2 is a key pathogenic event that precedes nigrostriatal dopamine neuron degeneration. The loss of VMAT2 may result from an association with α-synuclein aggregation induced by oxidative stress. Disruption of dopamine sequestration by reducing VMAT2 is an early pathogenic event in the dopamine neuron degeneration that occurs in the MPTP non-human primate model of PD. Genetic or environmental factors that decrease VMAT2 function may be important determinants of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号