首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypothetical Products from Noncoding Frames (i.e., HyPNoFs) are hypothetical, not-coded proteins, translated from alternate reading frames (i.e., coding+1 and coding+2) of cDNAs. HyPNoFs of CD4, PKC, oncostatin, bcl-2 proto-oncogene, tumor suppressor p53, cystic fibrosis transmembrane regulator (CFTR), and tumor necrosis factors a and were searched as query sequences vs the SWISS-PROT data bank. Homology searches carried out revealed that hypothetical products (i.e., HyPNoFs) may share high similarity with real protein products actually coded. Sequence similarity of hypothetical products to real proteins is sometimes very high, suggesting common conformational features, according to the Sander and Schneider cutoff value. This finding supports the hypothesis that eukaryotic DNA, currently considered to be monocistronic, might occasionally have polycistronic regions, carrying different protein messages on overlapping frames. As yet, polycistronic genes have been observed in viral genomes only. The presence of polycistronic regions in eukaryotic genes is likely reminiscent of an ancient strategy, rather than a present feature of the genome in eukaryotes.These data suggest that thorough investigation of HyPNoFs is likely to improve our ability to trace genes' evolution and to investigate structure-function relationships of protein and DNA sequences.  相似文献   

2.

Background

Understanding the genetic basis of adaptive evolution is one of the major goals in evolutionary biology. Recently, it has been revealed that gene copy number variations (GCNVs) constitute significant proportions of genomic diversities within natural populations. However, it has been unclear whether GCNVs are under positive selection and contribute to adaptive evolution. Parallel evolution refers to adaptive evolution of the same trait in related but independent lineages, and three-spined stickleback (Gasterosteus aculeatus) is a well-known model organism. Through identification of genetic variations under parallel selection, i.e., variations shared among related but independent lineages, evidence of positive selection is obtained. In this study, we investigated whole-genome resequencing data from the marine and freshwater groups of three-spined sticklebacks from diverse areas along the Pacific and Atlantic Ocean coastlines, and searched for GCNVs under parallel selection.

Results

We identified 24 GCNVs that showed significant differences in the numbers of mapped reads between the two groups, and this number was significantly larger than that expected by chance. The derived group, i.e., freshwater group, was typically characterized by larger gene-copy numbers, which implied that gene duplications or multiplications helped with adaptation to the freshwater environment. Some of the identified GCNVs were those of multigenic family genes, which is consistent with the theory that fatal effects due to copy-number changes of multigenic family genes tend to be less than those of single-copy genes.

Conclusion

The identification of GCNVs that were likely under parallel selection suggests that contribution of GCNVs should be considered in studies on adaptive evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-735) contains supplementary material, which is available to authorized users.  相似文献   

3.
Quantitative genetics (QG) analyses variation in traits of humans, other animals, or plants in ways that take account of the genealogical relatedness of the individuals whose traits are observed. ??Classical?? QG, where the analysis of variation does not involve data on measurable genetic or environmental entities or factors, is reformulated in this article using models that are free of hypothetical, idealized versions of such factors, while still allowing for defined degrees of relatedness among kinds of individuals or ??varieties.?? The gene-free formulation encompasses situations encountered in human QG as well as in agricultural QG. This formulation is used to describe three standard assumptions involved in classical QG and provide plausible alternatives. Several concerns about the partitioning of trait variation into components and its interpretation, most of which have a long history of debate, are discussed in light of the gene-free formulation and alternative assumptions. That discussion is at a theoretical level, not dependent on empirical data in any particular situation. Additional lines of work to put the gene-free formulation and alternative assumptions into practice and to assess their empirical consequences are noted, but lie beyond the scope of this article. The three standard QG assumptions examined are: (1) partitioning of trait variation into components requires models of hypothetical, idealized genes with simple Mendelian inheritance and direct contributions to the trait; (2) all other things being equal, similarity in traits for relatives is proportional to the fraction shared by the relatives of all the genes that vary in the population (e.g., fraternal or dizygotic twins share half of the variable genes that identical or monozygotic twins share); (3) in analyses of human data, genotype-environment interaction variance (in the classical QG sense) can be discounted. The concerns about the partitioning of trait variation discussed include: the distinction between traits and underlying measurable factors; the possible heterogeneity in factors underlying the development of a trait; the kinds of data needed to estimate key empirical parameters; and interpretations based on contributions of hypothetical genes; as well as, in human studies, the labeling of residual variance as a non-shared environmental effect; and the importance of estimating interaction variance.  相似文献   

4.
5.
6.
Undoubted lines of evidence point out that members of CYCLOIDEA (CYC) 2 clade are essential players to control flower symmetry and, amusingly, also are determinants of capitula architecture (pseudanthium). In several species, CYC-like genes influence the androecium patterning, but to date, the function of these genes in the development of gynoecium organs is less clear. In this review, we first reported details about floral symmetry and an overview of genes and molecular mechanisms regulating the development of zygomorphism in different angiosperm lineages (e.g., basal and core eudicots and monocots). Then, we paid emphasis on the role of CYC-like genes in the development of heterogamous inflorescence of sunflower as well as other Asteraceae and some species within the Dipsacaceae family. Helianthus annuus is particularly attractive because it represents a useful model to study the role of CYC-like genes on shaping floral corolla as well as the differentiation of reproductive organs in different flowers of pseudanthia. A special attention was reserved to inflorescence morphology mutants of sunflower (i.e., Chrysanthemoids2 and tubular ray flower) because they provide useful information on the role of CYC-like genes in the radiate capitulum evolution. Finally, we discuss data from literature to suggest that CYC-like genes are also co-opted to regulate stamen and carpel differentiation likely throughout their interaction with the cell cycle and flower organ identity genes. The recruitment of reproductive organs in ray flowers also supports the phylogenetic origin of a radiate inflorescence of sunflower from a discoid capitulum and suggests that in sterile zygomorphic ray flower primordia the latent identity to differentiate both microsporangium and macrosporangium was conserved.  相似文献   

7.
A sequestered germline in Metazoa has been argued to be an obstacle to lateral gene transfer (LGT), though few studies have specifically assessed this claim. Here, we test the hypothesis that the origin of a sequestered germline reduced LGT events in Bilateria (i.e., triploblast lineages) as compared to early‐diverging Metazoa (i.e., Ctenophora, Cnidaria, Porifera, and Placozoa). We analyze single‐gene phylogenies generated with over 900 species sampled from among Bacteria, Archaea, and Eukaryota to identify well‐supported interdomain LGTs. We focus on ancient interdomain LGT (i.e., those between prokaryotes and multiple lineages of Metazoa) as systematic errors in single‐gene tree reconstruction create uncertainties for interpreting eukaryote‐to‐eukaryote transfer. The breadth of the sampled Metazoa enables us to estimate the timing of LGTs, and to examine the pattern before versus after the evolution of a sequestered germline. We identified 58 LGTs found only in Metazoa and prokaryotes (i.e., bacteria and/or archaea), and seven genes transferred from prokaryotes into Metazoa plus one other eukaryotic clade. Our analyses indicate that more interdomain transfers occurred before the development of a sequestered germline, consistent with the hypothesis that this feature is an obstacle to LGT.  相似文献   

8.
Vertebrate paralogous MEF2 genes: origin, conservation, and evolution   总被引:1,自引:0,他引:1  
Wu W  de Folter S  Shen X  Zhang W  Tao S 《PloS one》2011,6(3):e17334
  相似文献   

9.
This article presents a survey of ontogenetic studies in paleobotany, and of biologically relevant mathematical results available from such techniques as finite element analyses, algorithmic systems, and computer simulation. Dynamic representations of growth are possible when the observed cellular arrangements in fossils are mathematically described. Successive computer solutions of parameterizing equations allow for the extrapolation of ontogenetic trends forwards and backwards in time (i.e., more and less mature stages, respectively), as well as the interpolation of missing stages or portions of an organism's development. The hypothetical constructions derived from these techniques may be tested against direct comparisons with the fossil being simulated and/pr proposed modern analogues. Similarly, multicellular organisms or portions of organisms (e.g., leaves, sporangia) may be constructed as arrays of symbols — each symbol representing a cell or group of cells. Development in such models is simulated by providing instructions for cell division, cell death, or alteration in cellular states, e.g., vegetative to reproductive. Illustrative simulations of Parka, Mastopora, Rhynia and Calamites are presented and paleobotanical conclusions concerning their respective growth patterns are drawn.  相似文献   

10.
11.
12.
13.
Cytonuclear coevolution is a common feature among plants, which coordinates gene expression and protein products between the nucleus and organelles. Consequently, lineage-specific differences may result in incompatibilities between the nucleus and cytoplasm in hybrid taxa. Allopolyploidy is also a common phenomenon in plant evolution. The hybrid nature of allopolyploids may result in cytonuclear incompatibilities, but the massive nuclear redundancy created during polyploidy affords additional avenues for resolving cytonuclear conflict (i.e. cytonuclear accommodation). Here we evaluate expression changes in organelle-targeted nuclear genes for 6 allopolyploid lineages that represent 4 genera (i.e. Arabidopsis, Arachis, Chenopodium, and Gossypium) and encompass a range in polyploid ages. Because incompatibilities between the nucleus and cytoplasm could potentially result in biases toward the maternal homoeolog and/or maternal expression level, we evaluate patterns of homoeolog usage, expression bias, and expression-level dominance in cytonuclear genes relative to the background of noncytonuclear expression changes and to the diploid parents. Although we find subsets of cytonuclear genes in most lineages that match our expectations of maternal preference, these observations are not consistent among either allopolyploids or categories of organelle-targeted genes. Our results indicate that cytonuclear expression evolution may be subtle and variable among genera and genes, likely reflecting a diversity of mechanisms to resolve nuclear-cytoplasmic incompatibilities in allopolyploid species.  相似文献   

14.
15.
16.
17.
Phylogenetic analysis of 42 membrane protein (M) genes of influenza A viruses from a variety of hosts and geographic locations showed that these genes have evolved into at least four major host-related lineages: (i) A/Equine/prague/56, which has the most divergent M gene; (ii) a lineage containing only H13 gull viruses; (iii) a lineage containing both human and classical swine viruses; and (iv) an avian lineage subdivided into North American avian viruses (including recent equine viruses) and Old World avian viruses (including avianlike swine strains). The M gene evolutionary tree differs from those published for other influenza virus genes (e.g., PB1, PB2, PA, and NP) but shows the most similarity to the NP gene phylogeny. Separate analyses of the M1 and M2 genes and their products revealed very different patterns of evolution. Compared with other influenza virus genes (e.g., PB2 and NP), the M1 and M2 genes are evolving relatively slowly, especially the M1 gene. The M1 and M2 gene products, which are encoded in different but partially overlapping reading frames, revealed that the M1 protein is evolving very slowly in all lineages, whereas the M2 protein shows significant evolution in human and swine lineages but virtually none in avian lineages. The evolutionary rates of the M1 proteins were much lower than those of M2 proteins and other internal proteins of influenza viruses (e.g., PB2 and NP), while M2 proteins showed less rapid evolution compared with other surface proteins (e.g., H3HA). Our results also indicate that for influenza A viruses, the evolution of one protein of a bicistronic gene can affect the evolution of the other protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
Lacticin 3147 is a broad-spectrum two-peptide lantibiotic whose genetic determinants are located on two divergent operons on the lactococcal plasmid pMRC01. Here we introduce each of 14 subclones, containing different combinations of lacticin 3147 genes, into MG1363 (pMRC01) and determine that a number of them can facilitate overproduction of the lantibiotic. Based on these studies it is apparent that while the provision of additional copies of genes encoding the biosynthetic/production machinery and the regulator LtnR is a requirement for high-level overproduction, the presence of additional copies of the structural genes (i.e., ltnA1A2) is not.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号