首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nitrogen retention in soil organic matter (SOM) is a key process influencing the accumulation and loss of N in forest ecosystems, but the rates and mechanisms of inorganic N retention in soils are not well understood. The primary objectives of this study were to compare ammonium (NH4+), nitrite (NO2?), and nitrate (NO3?) immobilization among soils developed under different tree species in the Catskill Mountains of New York State, and to determine the relative roles of biotic or abiotic processes in soil N retention. A laboratory experiment was performed, where 15N was added as NH4+, NO2?, or NO3? to live and mercury‐treated O horizon soils from three tree species (American beech, northern red oak, sugar maple), and 15N recoveries were determined in the SOM pool. Mercuric chloride was used to treat soils as this chemical inhibits microbial metabolism without significantly altering the chemistry of SOM. The recovery of 15N in SOM was almost always greater for NH4+ (mean 20%) and NO2? (47%) than for NO3? (10%). Ammonium immobilization occurred primarily by biotic processes, with mean recoveries in live soils increasing from 9% at 15 min to 53% after 28 days of incubation. The incorporation of NO2? into SOM occurred rapidly (<15 min) via abiotic processes. Abiotic immobilization of NO2? (mean recovery 58%) was significantly greater than abiotic immobilization of NH4+ (7%) or NO3? (7%). The incorporation of NO2? into SOM did not vary significantly among tree species, so this mechanism likely does not contribute to differences in soil NO3? dynamics among species. As over 30% of the 15NO2? label was recovered in SOM within 15 min in live soils, and the products of NO2? incorporation into SOM remained relatively stable throughout the 28‐day incubation, our results suggest that NO2? incorporation into SOM may be an important mechanism of N retention in forest soils. The importance of NO2? immobilization for N retention in field soils, however, will depend on the competition between incorporation into SOM and nitrification for transiently available NO2?. Further research is required to determine the importance of this process in field environments.  相似文献   

3.
Mediterranean climates predispose aquatic systems to both flood and drought periods, therefore, stream sediments may be exposed to desiccation periods. Changes in oxygen concentrations and sediment water content influence the biotic processes implicated in nitrogen dynamics. The objectives of this study were to identify (1) the changes of inorganic nitrogen in stream sediments during the transition from wet to dry conditions, and (2) the underlying processes in N dynamics and its regulation. Extractable sediment NO3 -N and NH4 +-N, organic matter and extractable organic carbon content were assessed during natural desiccation in microcosms with sediments from an intermittent Mediterranean stream. In agreement with our initial hypothesis, our results showed how the NO3 -N content of the sediment was enhanced during the first 10 days of sediment drying, whereas NH4 +-N was lost by 14 days post-drying. During the first 10 days, sediment desiccation seemed to stimulate the net N-mineralization and net nitrification from sediments. Afterwards, the extractable NO3 -N concentration sharply dropped, which may be attributed to lower ammonium-oxidation rates as ammonium and organic matter are depleted, and to an increase in NO3 -N consumption by microbial populations. Denitrification was inhibited, with a significant decrease as % water-filled pore space lowered. We hypothesize that the sediment inorganic N content enhanced during sediment desiccation could be released as part of the N pulse observed after sediment rewetting. However, the stream N availability after rewetting dried sediments would differ depending on desiccation period duration.  相似文献   

4.
Evidence for abiotic immobilization of nitrogen (N) in soil is accumulating, but remains controversial. Identifying the fate of N from atmospheric deposition is important for understanding the N cycle of forest ecosystems. We studied soils of two Abies pinsapo fir forests under Mediterranean climate seasonality in southern Spain—one with low N availability and the other with symptoms of N saturation. We hypothesized that biotic and abiotic immobilization of nitrate (NO3 ) would be lower in soils under these forests compared to more mesic temperate forests, and that the N saturated stand would have the lowest rates of NO3 immobilization. Live and autoclaved soils were incubated with added 15NO3 (10 μg N g−1 dry soil; 99% enriched) for 24 h, and the label was recovered as total dissolved-N, NO3 , ammonium (NH4 +), or dissolved organic-N (DON). To evaluate concerns about possible iron interference in analysis of NO3 concentrations, both flow injection analysis (FIA) and ion chromatography (IC) were applied to water extracts, soluble iron was measured in both water and salt extracts, and standard additions of NO3 to salt extracts were analyzed. Good agreement between FIA and IC analysis, low concentrations of soluble Fe, and 100% (±3%) recovery of NO3 standard additions all pointed to absence of an interference problem for NO3 quantification. On average, 85% of the added 15NO3 label was recovered as 15NO3 , which supports our hypothesis that rates of immobilization were generally low in these soils. A small amount (mean = 0.06 μg N g−1 dry soil) was recovered as 15NH4 + in live soils and none in sterilized soils. Mean recovery as DO15N ranged from 0.6 to 1.5 μg N g−1 dry soil, with no statistically significant effect of sterilization or soil type, indicating that this was an abiotic process that occurred at similar rates in both soils. These results demonstrate a detectable, but modest rate of abiotic immobilization of NO3 to DON, supporting our first hypothesis. These mineral soils may not have adequate carbon availability to support the regeneration of reducing microsites needed for high rates of NO3 reduction. Our second hypothesis regarding lower expected abiotic immobilization in soils from the N-saturated site was not supported. The rates of N deposition in this region may not be high enough to have swamped the capacity for soil NO3 immobilization, even in the stand showing some symptoms of N saturation. A growing body of evidence suggests that soil abiotic NO3 immobilization is common, but that rates are influenced by a combination of factors, including the presence of plentiful available carbon, reduced minerals in anaerobic microsites and adequate NO3 supply.  相似文献   

5.
Post-fire changes in desert vegetation patterns are known, but the mechanisms are poorly understood. Theory suggests that pulse dynamics of resource availability confer advantages to invasive annual species, and that pulse timing can influence survival and competition among species. Precipitation patterns in the American Southwest are predicted to shift toward a drier climate, potentially altering post-fire resource availability and consequent vegetation dynamics. We quantified post-fire inorganic N dynamics and determined how annual plants respond to soil inorganic nitrogen variability following experimental fires in a Mojave Desert shrub community. Soil inorganic N, soil net N mineralization, and production of annual plants were measured beneath shrubs and in interspaces during 6 months following fire. Soil inorganic N pools in burned plots were up to 1 g m−2 greater than unburned plots for several weeks and increased under shrubs (0.5–1.0 g m−2) more than interspaces (0.1–0.2 g m−2). Soil NO3 −N (nitrate−N) increased more and persisted longer than soil NH4 +−N (ammonium−N). Laboratory incubations simulating low soil moisture conditions, and consistent with field moisture during the study, suggest that soil net ammonification and net nitrification were low and mostly unaffected by shrub canopy or burning. After late season rains, and where soil inorganic N pools were elevated after fire, productivity of the predominant invasive Schismus spp. increased and native annuals declined. Results suggest that increased N availability following wildfire can favor invasive annuals over natives. Whether the short-term success of invasive species following fire will direct long-term species composition changes remains to be seen, yet predicted changes in precipitation variability will likely interact with N cycling to affect invasive annual plant dominance following wildfire.  相似文献   

6.
Plant and microbial use of nitrogen (N) can be simultaneously mutualistic and competitive, particularly in ecosystems dominated by mycorrhizal fungi. Our goal was to quantify plant uptake of organic and inorganic N across a broad latitudinal gradient of forest ecosystems that varied with respect to overstory taxon, edaphic characteristics, and dominant mycorrhizal association. Using 13C and 15N, we observed in situ the cycling dynamics of NH4 + and glycine through various soil pools and fine roots over 14 days. Recovery of 15N as soil N varied with respect to N form, forest type, and sampling period; however, there were similarities in the cycling dynamics of glycine and NH4 + among all forest types. Microbial immobilization of 15N was immediately apparent for both treatments and represented the largest sink (~25%) for 15N among extractable soil N pools during the first 24 h. In contrast, fine roots were a relatively small sink (<10%) for both N forms, but fine root 13C enrichment indicated that plants in all forest types absorbed glycine intact, suggesting that plants and microbes effectively target the same labile soil N pools. Relative uptake of amino acid-N versus NH4 + varied significantly among sites and approximately half of this variation was explained by mycorrhizal association. Estimates of plant uptake of amino acid-N relative to NH4 + were 3× higher in ectomycorrhizal-dominated stands (1.6 ± 0.2) than arbuscular mycorrhizae-dominated stands (0.5 ± 0.1). We conclude that free amino acids are an important component of the N economy in all stands studied; however, in these natural environments plant uptake of organic N relative to inorganic N is explained as much by mycorrhizal association as by the availability of N forms per se.  相似文献   

7.
The dynamics of inorganic N are important in soil, and this applies particularly to the saline–alkaline soils of the former lake Texcoco in Mexico with high pH and salinity where a forestation program was started in the 1970s. In soils of lake Texcoco, in Mexico, more than 50% of applied N could not be accounted for one day after application of 200 mg kg–1 soil along with glucose amendment. It was not clear whether this was due to abiotic or biotic processes, the form of inorganic N applied or the result of applying an easily decomposable substrate. We investigated this by adding glucose and 200 mg kg–1 soil as (NH4)2SO4-N or KNO3-N to sterilized and unsterilized soil. The changes in inorganic and ninhydrin N, microbial biomass C and production of CO2 were then monitored. Between the time of applying N and extraction with 0.5 M K2SO4, i.e., after ca 2 h, approximately 110 mg NH4 +-N kg–1 dry soil could not be accounted for in the unsterilized and sterilized soil and that remained so for the entire incubation in the sterilized soil. After 1 day this increased to 140 mg NH4 +-N kg–1 dry soil in the unsterilized control and 170 mg NH4 +-N kg–1 dry soil in C amended soil. Volatilization of NH3 accounted for 56 mg NH4 +-N kg–1 so the rest appeared to be adsorbed on the soil matrix. The NH3 volatilization and NH4 + fixed in the soil matrix remained constant over time and no oxidation to NO2 or NO3 had occurred, so unaccounted N in unsterilized soil was probably incorporated into the microbial biomass in excess of what was required for metabolic activity. The unaccounted N was ca 70 mg NO3 –N in nitrate amended soil after 3 days and 138 NO3 –N when glucose was additionally added. Losses through abiotic processes were absent as inferred from changes in sterilized soil and the aerobic incubation inhibited possible losses through denitrification. It was inferred that NO3 that could not be accounted for was taken up by micro-organisms in excess of what was required for metabolic activity.  相似文献   

8.
In semi-arid grassland ecosystems, soil biogeochemical processes are controlled by seasonal and inter-annual rainfall variation and temperature, which may override the long-term impact of grazers on N availability and N dynamics. In a three-year (2004?C2006) case study of an Inner Mongolian grassland, we analysed time-integrated (ion-exchange resins) and instantaneous (soil mineral N extractions) inorganic N availability at three sites of varying grazing intensities and combined these data with information on soil water content (SWC), aboveground net primary productivity (ANPP) and plant N uptake. Additionally, the effects of rainfall and grazing on N-form availability (NO 3 ? -N, NH 4 + -N) were considered. Grazing had less impact on N availability compared to seasonal and annual rainfall distribution. One of the three study years (2004) showed a grazing effect with higher resin-N availability at the ungrazed site compared to the heavily grazed site. Inorganic N availability was low in the driest year (2005) and highest in a year of average rainfall amount and favourable distribution (2004). In general, we found a positive relationship between inorganic N availability and both plant productivity and plant N uptake. Rainfall also controlled the plant available NO 3 ? -N and NH 4 + -N pools; NH 4 + -N dominated the available inorganic N-form in times of low SWC, while the available NO 3 ? -N increased with SWC. We observed N availability and plant productivity in a temporal synchronized pattern. Increased rainfall variability and land-use practices affecting SWC will likely alter N availability dynamics (and the relation of N-forms) and, therefore, important processes of semi-arid natural grassland carbon and N cycling.  相似文献   

9.
Rates of nitrogen (N) deposition have been historically high throughout much of the northeastern United States; thus, understanding the legacy of these high N loads is important for maintaining forest productivity and resilience. Though many studies have documented plant invasions due to N deposition and associated impacts on ecosystems, less is known about whether invasive plants will continue to increase in dominance with further shifting nutrient regimes. Using soil N and carbon additions, we examined the impact of both increasing and decreasing soil N on native and invasive understory plant dynamics over 4 years in a northeastern deciduous forest with a long history of N deposition. Despite applying large quantities of N, we found no difference in soil nitrate (NO3) or ammonium (NH4 +) pools in N addition plots over the course of the study. Indicative of the potential N saturation in these forest soils, resin-available NO3 ? and NH4 + showed evidence that the added N was rapidly moving out of the soil in N addition plots. Accordingly, we also found that adding N to soil altered neither invasive nor native plant abundance, though adding N temporally increased invasive plant richness. Carbon additions decreased soil N availability seasonally, but did not alter the total percent cover of invasive or native plants. Rather than being suppressed by excess N availability, native plant species in this ecosystem are primarily inhibited by the invasive species, which now dominate this site. In conclusion, understory plant communities in this potentially N-saturated ecosystem may be buffered to future alterations in N availability.  相似文献   

10.
A scrub‐oak woodland has maintained higher aboveground biomass accumulation after 11 years of atmospheric CO2 enrichment (ambient +350 μmol CO2 mol?1), despite the expectation of strong nitrogen (N) limitation at the site. We hypothesized that changes in plant available N and exploitation of deep sources of inorganic N in soils have sustained greater growth at elevated CO2. We employed a suite of assays performed in the sixth and 11th year of a CO2 enrichment experiment designed to assess soil N dynamics and N availability in the entire soil profile. In the 11th year, we found no differences in gross N flux, but significantly greater microbial respiration (P≤0.01) at elevated CO2. Elevated CO2 lowered extractable inorganic N concentrations (P=0.096) considering the whole soil profile (0–190 cm). Conversely, potential net N mineralization, although not significant in considering the entire profile (P=0.460), tended to be greater at elevated CO2. Ion‐exchange resins placed in the soil profile for approximately 1 year revealed that potential N availability at the water table was almost 3 × greater than found elsewhere in the profile, and we found direct evidence using a 15N tracer study that plants took up N from the water table. Increased microbial respiration and shorter mean residence times of inorganic N at shallower depths suggests that enhanced SOM decomposition may promote a sustained supply of inorganic N at elevated CO2. Deep soil N availability at the water table is considerable, and provides a readily available source of N for plant uptake. Increased plant growth at elevated CO2 in this ecosystem may be sustained through greater inorganic N supply from shallow soils and N uptake from deep soil.  相似文献   

11.
Submersed macrophytes in eutrophic lakes often experience high NH4+ concentration and low light availability in the water column. This study found that an NH4+–N concentration of 1 mg L?1 in the water column apparently caused physiological stress on the macrophyte Potamogeton crispus L. The plants accumulated free amino acids (FAA) and lost soluble carbohydrates (SC) under NH4+ stress. These stressful effects of NH4+ were exacerbated under low light availability. Shading significantly increased NH4+ and FAA contents and dramatically decreased SC and starch contents in the plant shoots. At an NH4+–N concentration of 1 mg L?1 in the water column, neither growth inhibition nor NH4+ accumulation was observed in the plant tissues of P. crispus under normal light availability. The results showed that 1 mg L?1 NH4+–N in the water column was not toxic to P. crispus in a short term. To avoid NH4+ toxicity, active NH4+ transportation out of the cell may cost energy and thus result in a decline of carbohydrate. When NH4+ inescapably accumulates in the plant cell, i.e. under NH4+ stress and shading, NH4+ is scavenged by FAA synthesis.  相似文献   

12.
Scott EE  Rothstein DE 《Oecologia》2011,167(2):547-557
The relationship between inorganic nitrogen (N) cycling and plant productivity is well established. However, recent research has demonstrated the ability of plants to take up low molecular weight organic N compounds (i.e., amino acids) at rates that often rival those of inorganic N forms. In this study, we hypothesize that temperate forest tree species characteristic of low-fertility habitats will prefer amino acids over species characteristic of high-fertility habitats. We measured the uptake of 15N-labeled amino acids (glycine, glutamine, arginine, serine), ammonium (NH4 +), and nitrate (NO3 ) by four tree species that commonly occur in eastern North America, where their abundances have been correlated with inorganic N availability. Specific uptake rates of amino acids were largely similar for all tree species; however, high-fertility species took up NH4 + at rates more than double those of low-fertility species, rendering amino acid N relatively more important to the N nutrition of low-fertility species. Low-fertility species acquired over four times more total N from arginine compared to NH4 + and NO3 ; high-fertility species acquired the most N from NH4 +. Arginine had the highest uptake rates of any amino acid by all species; there were no significant differences in uptake rates of the remaining amino acids. Our results support the idea that the dominant species in a particular habitat are those best able to utilize the most available N resources.  相似文献   

13.
The fate of immobilized N in soils is one of the great uncertainties in predicting C sequestration at increased CO2 and N deposition. In a dual isotope tracer experiment (13C, 15N) within a 4‐year CO2 enrichment (+200 ppmv) study with forest model ecosystems, we (i) quantified the effects of elevated CO2 on the partitioning of N; (ii) traced immobilized N into physically separated pools of soil organic matter (SOM) with turnover rates known from their 13C signals; and (iii) estimated the remobilization and thus, the bio‐availability of newly sequestered C and N. (1) CO2 enrichment significantly decreased NO3? concentrations in soil waters and export from 1.5 m deep lysimeters by 30–80%. Consequently, elevated CO2 increased the overall retention of N in the model ecosystems. (2) About 60–80% of added 15NH415NO3 were retained in soils. The clay fraction was the greatest sink for the immobilized 15N sequestering 50–60% of the total new soil N. SOM associated with clay contained only 25% of the total new soil C pool and had small C/N ratios (<13), indicating that it consists of humified organic matter with a relatively slow turn over rate. This implies that added 15N was mainly immobilized in stable mineral‐bound SOM pools. (3) Incubation of soils for 1 year showed that the remobilization of newly sequestered N was three to nine times smaller than that of newly sequestered C. Thus, inorganic inputs of N were stabilized more effectively in soils than C. Significantly less newly sequestered N was remobilized from soils previously exposed to elevated CO2. In summary, our results show firstly that a large fraction of inorganic N inputs becomes effectively immobilized in relative stable SOM pools and secondly that elevated CO2 can increase N retention in soils and hence it may tighten N cycling and diminish the risk of nitrate leaching to groundwater.  相似文献   

14.
Long-term, landscape patterns in inorganic nitrogen (N) availability and N stocks following infrequent, stand-replacing fire are unknown but are important for interpreting the effect of disturbances on ecosystem function. Here, we present results from a replicated chronosequence study in the Greater Yellowstone Ecosystem (Wyoming, USA) directed at measuring inorganic N availability (ion-exchange resin bags) and ecosystem N pools among 77 lodgepole pine stands that varied in age and density. Inorganic N availability ranged from 0.07 to 3.20 μN bag−1 d−1 and nitrate (NO3) was, on average, 65% of total resin-sorbed N. Total ecosystem N stocks (live + detrital + soil) averaged 109.9 ± 3.0 g N m−2 (range = 63.7–185.8 g N m−2). Live N was 14%, detrital N was 29%, and soil N was 57% of total stocks. Soil NO3, total ecosystem N, live N, and detrital N generally increased with stand age, but soil N stocks decreased. Models (AICc) to predict soil N availability and N stocks included soil P, soil Ca, bulk density, and pH in addition to age (adj R 2 ranged from 0.18 to 0.53) and density was included only for live N stocks. Patterns of N stocks and N availability with density were strongest for young stands (<20 years) regenerating from extensive fire in 1988; for example, litterfall N stocks increased with density (adj R 2 = 0.86, P < 0.001) but inorganic N availability declined (adj R 2 = 0.47, P < 0.003). Across the complex Yellowstone landscape, we conclude that N stocks and N availability are best predicted by a combination of local soil characteristics in addition to factors that vary at landscape scales (stand density and age). Overall, total ecosystem N stocks were recovered quickly following stand-replacing fire, suggesting that moderate increases in fire frequency will not affect long-term landscape N storage in Greater Yellowstone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author contributions   EAHS, MGT, and MGR conceived the study; DMK performed field research; EAHS and DMK oversaw laboratory analyses and analyzed data; EAHS wrote the paper.  相似文献   

15.
Soils are an important source of NO, particularly in dry lands because of trade‐offs that develop between biotic and abiotic NO‐producing processes when soils dry out. Understanding how drier climates may offset the balance of these trade‐offs as soils transition toward more arid states is, therefore, critical to estimating global NO budgets, especially because drylands are expected to increase in size. We measured NO emission pulses after wetting soils from similar lithologies along an altitudinal gradient in the Sierra Nevada, CA, where mean annual precipitation varied from 670 to 1500 mm. Along the gradient, we measured field NO emissions, and used chloroform in the laboratory to reduce microbial activity and partition between biotic and abiotic NO‐producing processes (i.e., chemodenitrification). Field NO emission pulses were lowest in the acidic and SOM‐rich soils (4–72 ng NO‐N m?2 s?1), but were highest in the high‐elevation barren site (~560 ng NO‐N m?2 s?1). In the laboratory, NO emission pulses were up to 19× greater in chloroform‐treated soils than in the controls, and these abiotic pulses increased with elevation as pH decreased (6.2–4.4) and soil organic matter (SOM) increased (18–157 mg C g?1). Drought can shift the balance between the biotic and abiotic processes that produce NO, favoring chemodenitrification during periods when biological processes become stressed. Acidic and SOM‐rich soils, which typically develop under mesic conditions, are most vulnerable to N loss via NO as interactions between pH, SOM, and drought stimulate chemodenitrification.  相似文献   

16.
1. Excretion of nitrogen (N) and phosphorus (P) is a direct and potentially important role for aquatic consumers in nutrient cycling that has recently garnered increased attention. The ecosystem‐level significance of excreted nutrients depends on a suite of abiotic and biotic factors, however, and few studies have coupled measurements of excretion with consideration of its likely importance for whole‐system nutrient fluxes. 2. We measured rates and ratios of N and P excretion by shrimps (Xiphocaris elongata and Atya spp.) in two tropical streams that differed strongly in shrimp biomass because a waterfall excluded predatory fish from one site. We also made measurements of shrimp and basal resource carbon (C), N and P content and estimated shrimp densities and ecosystem‐level N and P excretion and uptake. Finally, we used a 3‐year record of discharge and NH4‐N concentration in the high‐biomass stream to estimate temporal variation in the distance required for excretion to turn over the ambient NH4‐N pool. 3. Per cent C, N, and P body content of Xiphocaris was significantly higher than that of Atya. Only per cent P body content showed significant negative relationships with body mass. C:N of Atya increased significantly with body mass and was higher than that of Xiphocaris. N : P of Xiphocaris was significantly higher than that of Atya. 4. Excretion rates ranged from 0.16–3.80 μmol NH4‐N shrimp?1 h?1, 0.23–5.76 μmol total dissolved nitrogen (TDN) shrimp?1 h?1 and 0.002–0.186 μmol total dissolved phosphorus (TDP) shrimp?1 h?1. Body size was generally a strong predictor of excretion rates in both taxa, differing between Xiphocaris and Atya for TDP but not NH4‐N and TDN. Excretion rates showed statistically significant but weak relationships with body content stoichiometry. 5. Large between‐stream differences in shrimp biomass drove differences in total excretion by the two shrimp communities (22.3 versus 0.20 μmol NH4‐N m?2 h?1, 37.5 versus 0.26 μmol TDN m?2 h?1 and 1.1 versus 0.015 μmol TDP m?2 h?1), equivalent to 21% and 0.5% of NH4‐N uptake and 5% and <0.1% of P uptake measured in the high‐ and low‐biomass stream, respectively. Distances required for excretion to turn over the ambient NH4‐N pool varied more than a hundredfold over the 3‐year record in the high‐shrimp stream, driven by variability in discharge and NH4‐N concentration. 6. Our results underscore the importance of both biotic and abiotic factors in controlling consumer excretion and its significance for nutrient cycling in aquatic ecosystems. Differences in community‐level excretion rates were related to spatial patterns in shrimp biomass dictated by geomorphology and the presence of predators. Abiotic factors also had important effects through temporal patterns in discharge and nutrient concentrations. Future excretion studies that focus on nutrient cycling should consider both biotic and abiotic factors in assessing the significance of consumer excretion in aquatic ecosystems.  相似文献   

17.
The modification of large areas of tropical forest to agricultural uses has consequences for the movement of inorganic nitrogen (N) from land to water. Various biogeochemical pathways in soils and riparian zones can influence the movement and retention of N within watersheds and affect the quantity exported in streams. We used the concentrations of NO3 and NH4 + in different hydrological flowpaths leading from upland soils to streams to investigate inorganic N transformations in adjacent watersheds containing tropical forest and established cattle pasture in the southwestern Brazilian Amazon Basin. High NO3 concentrations in forest soil solution relative to groundwater indicated a large removal of N mostly as NO3 in flowpaths leading from soil to groundwater. Forest groundwater NO3 concentrations were lower than in other Amazon sites where riparian zones have been implicated as important N sinks. Based on water budgets for these watersheds, we estimated that 7.3–10.3 kg N ha−1 y−1 was removed from flowpaths between 20 and 100 cm, and 7.1–10.2 kg N ha−1 y−1 was removed below 100 cm and the top of the groundwater. N removal from vertical flowpaths in forest exceeded previously measured N2O emissions of 3.0 kg N ha−1 y−1 and estimated emissions of NO of 1.4 kg N ha−1 y−1. Potential fates for this large amount of nitrate removal in forest soils include plant uptake, denitrification, and abiotic N retention. Conversion to pasture shifted the system from dominance by processes producing and consuming NO3 to one dominated by NH4 +, presumably the product of lower rates of net N mineralization and net nitrification in pasture compared with forest. In pasture, no hydrological flowpaths contained substantial amounts of NO3 and estimated N removal from soil vertical flowpaths was 0.2 kg N ha−1 y−1 below the depth of 100 cm. This contrasts with the extent to which agricultural sources dominate N inputs to groundwater and stream water in many temperate regions. This could change, however, if pasture agriculture in the tropics shifts toward intensive crop cultivation.  相似文献   

18.
In monoculture, certain plant species are able to preferentially utilize different nitrogen (N) forms, both inorganic and organic, including amino acids and peptides, thus forming fundamental niches based on the chemical form of N. Results from field studies, however, are inconsistent: Some showing that coexisting plant species predominantly utilize inorganic N, while others reveal distinct interspecies preferences for different N forms. As a result, the extent to which hypothetical niches are realized in nature remains unclear. Here, we used in situ stable isotope tracer techniques to test the idea, in temperate grassland, that niche partitioning of N based on chemical form is related to plant productivity and the relative availability of organic and inorganic N. We also tested in situ whether grassland plants vary in their ability to compete for, and utilize peptides, which have recently been shown to act as an N source for plants in strongly N-limited ecosystems. We hypothesized that plants would preferentially use NO3-N and NH4+-N over dissolved organic N in high-productivity grassland where inorganic N availability is high. On the other hand, in low-productivity grasslands, where the availability of dissolved inorganic N is low, and soil availability of dissolved organic N is greater, we predicted that plants would preferentially use N from amino acids and peptides, prior to microbial mineralization. Turves from two well-characterized grasslands of contrasting productivity and soil N availability were injected, in situ, with mixtures of 15N-labeled inorganic N (NO3 and NH4+) and 13C15N labeled amino acid (l-alanine) and peptide (l-tri-alanine). In order to measure rapid assimilation of these N forms by soil microbes and plants, the uptake of these substrates was traced within 2.5 hours into the shoots of the most abundant plant species, as well as roots and the soil microbial biomass. We found that, contrary to our hypothesis, the majority of plant species across both grasslands took up most N in the form of NH4+, suggesting that inorganic N is their predominant N source. However, we did find that organic N was a source of N which could be utilized by plant species at both sites, and in the low-productivity grassland, plants were able to capture some tri-alanine-N directly. Although our findings did not support the hypothesis that differences in the availability of inorganic and organic N facilitate resource partitioning in grassland, they do support the emerging view that peptides represent a significant, but until now neglected, component of the terrestrial N cycle.  相似文献   

19.
Large inputs of atmospheric N from dry deposition accumulate on vegetation and soil surfaces of southern Californian chaparral and coastal sage scrub (CSS) ecosystems during the late-summer and early-fall and become available as a pulse following winter rainfall; however, the fate of this dry season atmospheric N addition is unknown. To assess the potential for dry season atmospheric N inputs to be incorporated into soil and/or vegetation N pools, an in situ N addition experiment was initiated in a post-fire chaparral and a mature CSS stand where 10 × 10 m plots were exposed to either ambient N deposition (control) or ambient +50 kg N ha−1 (added N) added as NH4NO3 during a single application in October 2003. After 1 year of N addition, plots exposed to added N had significantly higher accumulation of extractable inorganic N (NH4−N + NO3−N) on ion exchange resins deployed in the 0–10 cm mineral soil layer and higher soil extractable N in the subsurface (30–40 cm) mineral soil than plots exposed to ambient N. Chaparral and CSS shrubs exposed to added N also exhibited a significant increase in tissue N concentration and a decline in the tissue C:N ratio, and added N significantly altered the shrub tissue δ 15N natural abundance. Leaching of inorganic N to 1 m below the soil surface was on average 2–3 times higher in the added N plots, but large within treatment variability cause these differences to be statistically insignificant. Although a large fraction of the added N could not be accounted for in the shrub and soil N pools investigated, these observations suggest that dry season N inputs can significantly and rapidly alter N availability and shrub tissue chemistry in Mediterranean-type chaparral and CSS shrublands of southern California.  相似文献   

20.
Nitrogen (N) limits plant productivity and its uptake and assimilation may be regulated by N source, N availability, and nitrate reductase activity (NRA). Knowledge of how these factors interact to affect N uptake and assimilation processes in woody angiosperms is limited. We fertilized 1-year-old, half-sib black walnut (Juglans nigra L.) seedlings with ammonium (NH4 +) [as (NH4)2SO4], nitrate (NO3 ) (as NaNO3), or a mixed N source (NH4NO3) at 0, 800, or 1,600 mg N plant−1 season−1. Two months following final fertilization, growth, in vivo NRA, plant N status, and xylem exudate N composition were assessed. Specific leaf NRA was higher in NO3 -fed and NH4NO3-fed plants compared to observed responses in NH4 +-fed seedlings. Regardless of N source, N addition increased the proportion of amino acids (AA) in xylem exudate, inferring greater NRA in roots, which suggests higher energy cost to plants. Root total NRA was 37% higher in NO3 -fed than in NH4 +-fed plants. Exogenous NO3 was assimilated in roots or stored, so no difference was observed in NO3 levels transported in xylem. Black walnut seedling growth and physiology were generally favored by the mixed N source over NO3 or NH4 + alone, suggesting NH4NO3 is required to maximize productivity in black walnut. Our findings indicate that black walnut seedling responses to N source and level contrast markedly with results noted for woody gymnosperms or herbaceous angiosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号