首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flowers are determinate shoots comprised of perianth and reproductive organs displayed in a whorled phyllotactic pattern. Floral organ identity genes display region-specific expression patterns in the developing flower. In Arabidopsis, floral organ identity genes are activated by LEAFY (LFY), which functions with region-specific co-regulators, UNUSUAL FLORAL ORGANS (UFO) and WUSCHEL (WUS), to up-regulate homeotic genes in specific whorls of the flower. PENNYWISE (PNY) and POUND-FOOLISH (PNF) are redundant functioning BELL1-like homeodomain proteins that are expressed in shoot and floral meristems. During flower development, PNY functions with a co-repressor complex to down-regulate the homeotic gene, AGAMOUS (AG), in the outer whorls of the flower. However, the function of PNY as well as PNF in regulating floral organ identity in the central whorls of the flower is not known. In this report, we show that combining mutations in PNY and PNF enhance the floral patterning phenotypes of weak and strong alleles of lfy, indicating that these BELL1-like homeodomain proteins play a role in the specification of petals, stamens and carpels during flower development. Expression studies show that PNY and PNF positively regulate the homeotic genes, APETALA3 and AG, in the inner whorls of the flower. Moreover, PNY and PNF function in parallel with LFY, UFO and WUS to regulate homeotic gene expression. Since PNY and PNF interact with the KNOTTED1-like homeodomain proteins, SHOOTMERISTEMLESS (STM) and KNOTTED-LIKE from ARABIDOPSIS THALIANA2 (KNAT2) that regulate floral development, we propose that PNY/PNF-STM and PNY/PNF-KNAT2 complexes function in the inner whorls to regulate flower patterning events.  相似文献   

2.
细胞分裂素对拟南芥(Arabidopsis thaliana)花分生组织细胞的分裂和分化具有重要作用。本研究利用APETALA1(AP1)特异启动子在花分生组织和第1、2轮花器官中表达细胞分裂素合成酶(isopentyl transferase,IPT)基因IPT4,研究细胞分裂素对花和花器官发育的影响。在pAP1∷IPT4转基因植株中出现了花密集和花器官数目增多等现象。原位杂交和GUS组织染色结果发现,在pAP1∷IPT4转基因植株中,花分生组织特征决定基因LEAFY(LFY)与花器官特征决定基因AP1、PISTILLATA(PI)和AGAMOUS(AG)的表达量均有不同程度的提高。研究结果表明在拟南芥中表达pAP1∷IPT4影响其花和花器官的正常发育。  相似文献   

3.
It is generally accepted that the genus Magnolia is characterised by an undifferentiated perianth, typically organised into three whorls of nearly identical tepals. In some species, however, we encountered interesting and significant perianth modifications. In Magnolia acuminata, M. liliiflora and M. stellata the perianth elements of the first whorl are visually different from the others. In M. stellata the additional, spirally arranged perianth elements are present above the first three whorls, which suggests that they have been formed within the domain of stamen primordia. In these three species, we analysed expression patterns of the key flower genes (AP1, AGL6, AP3, PI, AG) responsible for the identity of flower elements and correlated them with results of morphological and anatomical investigations. In all studied species the elements of the first whorl lacked the identity of petals (lack of AP3 and PI expression) but also that of leaves (presence of AGL6 expression), and this seems to prove their sepal character. The analysis of additional perianth elements of M. stellata, spirally arranged on the elongated floral axis, revealed overlapping and reduced activity of genes involved in specification of the identity of the perianth (AGL6) but also of generative parts (AG), even though no clear gradient of morphological changes could be observed. In conclusion, Magnolia genus is capable of forming, in some species, a perianth differentiated into a calyx (sepals) and corolla (petals). Spirally arranged, additional perianth elements of M. stellata, despite activity of AG falling basipetally, resemble petals.  相似文献   

4.
In higher eudicotyledonous angiosperms the floral organs are typically arranged in four different whorls, containing sepals, petals, stamens and carpels. According to the ABC model, the identity of these organs is specified by floral homeotic genes of class A, A+B, B+C and C, respectively. In contrast to the sepal and petal whorls of eudicots, the perianths of many plants from the Liliaceae family have two outer whorls of almost identical petaloid organs, called tepals. To explain the Liliaceae flower morphology, van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. According to this model, class B genes are not only expressed in whorls 2 and 3, but also in whorl 1. Thus the organs of both whorls 1 and 2 express class A plus class B genes and, therefore, get the same petaloid identity. To test this modified ABC model we have cloned and characterized putative class B genes from tulip. Two DEF- and one GLO-like gene were identified, named TGDEFA, TGDEFB and TGGLO. Northern hybridization analysis showed that all of these genes are expressed in whorls 1, 2 and 3 (outer and inner tepals and stamens), thus corroborating the modified ABC model. In addition, these experiments demonstrated that TGGLO is also weakly expressed in carpels, leaves, stems and bracts. Gel retardation assays revealed that TGGLO alone binds to DNA as a homodimer. In contrast, TGDEFA and TGDEFB cannot homodimerize, but make heterodimers with PI. Homodimerization of GLO-like protein has also been reported for lily, suggesting that this phenomenon is conserved within Liliaceae plants or even monocot species.these authors contributed equally to this work  相似文献   

5.
Background: Homeotic genes controlling the identity of flower organs have been characterized in several plant species. To determine whether cells expressing these genes are specified to follow particular developmental fates, we have studied the pattern of cell lineages in developing flowers of Antirrhinum. Each flower has four whorls of organs, and progenitor cells of these can be marked at particular stages of development using a temperature-sensitive transposon. This allows the cell lineages in the flower to be followed, as well as giving information about rates of cell division.Results We show here that, prior to the emergence of organ primordia, cells in the floral meristem have not been allocated organ identities. After this time, lineage restrictions arise between whorls, correlating with the onset of expression of genes that control organ identity. A further lineage restriction appears slightly later on, between the dorsal and ventral surfaces of the petal. Our results further suggest that the rates of cell division fluctuate during key stages of meristem development, perhaps as a consequence of meristem-identity gene expression.Conclusion The patterns of lineage restriction and organ-identity gene expression in early floral meristems are consistent with some cells being allocated specific identities at about this stage of development. Plant cells cannot move relative to each other, so lineage restrictions in plants may reflect particular orientations and/or rates of growth at boundary regions.  相似文献   

6.
7.
细胞分裂素对拟南芥(Arab idopsis thal iana)花分生组织细胞的分裂和分化具有重要作用。本研究利用APETALA1(AP1)特异启动子在花分生组织和第1、2轮花器官中表达细胞分裂素合成酶(isopentyl trans ferase, IPT)基因IPT4, 研究细胞分裂素对花和花器官发育的影响。在pAP1::IPT4转基因植株中出现了花密集和花器官数目增多等现象。原位杂交和GUS组织染色结果发现, 在pAP1::IPT4转基因植株中, 花分生组织特征决定基因LEAFY (LFY)与花器官特征决定基因AP1、PISTILLATA (PI )和AGAMOUS (AG)的表达量均有不同程度的提高。研究结果表明在拟南芥中表达pAP1::IPT4影响其花和花器官的正常发育。  相似文献   

8.
The Arabidopsis floral homeotic gene AGAMOUS (AG) is a regulator of early flower development. The ag mutant phenotypes suggest that AG has two functions in flower development: (1) specifying the identity of stamens and carpels, and (2) controlling floral meristem determinacy. To dissect these two AG functions, we have generated transgenic Arabidopsis plants carrying an antisense AG construct. We found that all of the transgenic plants produced abnormal flowers, which can be classified into three types. Type I transgenic flowers are phenocopies of the ag-1 mutant flowers, with both floral meristem indeterminacy and floral organ conversion; type II flowers are indeterminate and have partial conversion of the reproductive organs; and type III flowers have normal stamens and carpels, but still have an indeterminate floral meristem inside the fourth whorl of fused carpels. The existence of type III flowers indicates that AG function can be perturbed to affect only floral meristem determinacy, but not floral organ identity. Furthermore, the fact that floral meristem determinacy is affected in all transformants, but floral organ identity only in a subset of them, suggests that the former may required a higher level of AG activity than the latter. This hypothesis is supported by the levels of AG'mRNA detected in different transformants with different frequencies of distinct types of abnormal antisense AG transgenic flowers. Finally, since AG inhibits the expression of another floral regulatory gene AP1, we examined AP1 expression in antisense AG flowers, and found that AP1 is expressed at a relatively high level in the center of type II flowers, but very little or below detectable levels in the inner whorls of type III flowers. These results provide further insights into the interaction of AG and AP1 and how such an interaction may control both organ identity and floral meristem determinacy.  相似文献   

9.
Rapid progress in studies on flower development has resulted in refining the classical ‘ABC model’ into a new ‘ABCDE model’ to explain properly the regulation of floral organ identity. Conservation of E-function for flower organ identity among the dicotyledonous (dicot) plants has been revealed. However, its conservation in monocotyledonous (monocot) plants remains largely unknown. Here, we show the conservation of E-function in rice (Oryza sativaL.) by characterizing tissue culture-induced mutants of two MADS-box genes, OsMADS1and OsMADS5, which form a subclade within the well-supported clade of SEP-genes (E-function) phylogeny. Severe loss-of-function mutations of OsMADS1cause complete homeotic conversion of organs (lodicules, stamens, and carpels) of three inner whorls into lemma- and palea-like structures. Such basic deformed structure is reiterated along with the pedicel at the center of the same floret, indicating the loss of determinacy of the flower meristem. These phenotypes resemble the phenotypes caused by mutations of the dicot E-class genes, such as the Arabidopsis SEP123(SEPALLATA1/2/3) and the petunia FBP2(Floral Binding Protein 2), suggesting that OsMADS1play a very similar role in rice to that of defined E-class genes in dicot plants. In case of the loss-of-function mutation of OsMADS5, no defect in either panicles or vegetative organs was observed. These results demonstrate that OsMADS1clearly possesses E-function, and so, E-function is fundamentally conserved between dicot plants and rice, a monocot model plant.  相似文献   

10.
The classic ABC model explains the activities of each class of floral homeotic genes in specifying the identity of floral organs. Thus, changes in these genes may underlay the origin of floral diversity during evolution. In this study, three MADS-box genes were isolated from the perianthless basal angiosperm Chloranthus spicatus. Sequence and phylogenetic analyses revealed that they are AP1-like, AP3-like and SEP3-like genes, and hence these genes were termed CsAP1, CsAP3 and CsSEP3, respectively. Due to these assignments, they represent candidate class A, class B and class E genes, respectively. Expression patterns suggest that the CsAP1, CsAP3 and CsSEP3 genes function during flower development of C. spicatus. CsAP1 is expressed broadly in the flower, which may reflect the ancestral function of SQUA-like genes in the specification of inflorescence and floral meristems rather than in patterning of the flower. CsAP3 is exclusively expressed in male floral organs, providing the evidence that AP3-like genes have ancestral function in differentiation between male and female reproductive organs. CsSEP3 expression is not detectable in spike meristems, but its mRNA accumulates throughout the flower, supporting the view that SEP-like genes have conserved expression pattern and function throughout angiosperm. Studies of synonymous vs nonsynonymous nucleotide substitutions indicate that these genes have not evolved under changes in evolutionary forces. All the data above suggest that the genes may have maintained at least some ancestral functions despite the lack of perianth in the flowers of C. spicatus. Nucleotide sequences data from this article have been deposited with the EMBL/GenBank Data Libraries under accession numbers AY316311, AY397762 and AY379963.  相似文献   

11.
12.
To clarify the molecular mechanism of flower development in Rosa × hybrida L., three different APETALA1/FRUITFULL (AP1/FUL)-like MADS-box genes were isolated and their expression analyzed in normally developed flowers and in malformed flowers of a stable phenotype. AP1/FUL-like genes were designated as RhAP1-1, RhFUL, and RhAP1-2. Alignment of amino acid sequences showed 83% identity between RhAP1-1 and TrAP1 of Taihangia rupestris and 82% identity between RhFUL and TrFUL of T. rupestris. RhAP1-1 is 97% identical to RhAP1-2 and 58% identical to RhFUL. Expression of RhAP1-1 and RhAP1-2 in whorls 1 and 2 of rose flowers exclusively is in accordance with the expression pattern of class A genes in other plant species. In contrast, RhFUL showed a unique expression pattern and was expressed only in sepals. The roles of all putative A, B, and C class genes were examined in different flower organs of normally developed flowers and in malformed flowers that are similar to a classic C function mutant from Arabidopsis (with petals in whorl 3 and sepals in whorl 4). The expression pattern of the putative class B genes was similar in both normal and malformed flowers. However, the putative class A genes were upregulated and class C genes were downregulated in all flower organs of the mutant. These data suggest that suppression of the class C genes RhC1 and RhC2 leads to altered expression of RhAP1-1, RhFUL, and RhAP1-2 in whorls 3 and 4 that leads to the mutant flower phenotype.  相似文献   

13.
The AP1/FUL clade of MADS box genes have undergone multiple duplication events among angiosperm species. While initially identified as having floral meristem identity and floral organ identity function in Arabidopsis, the role of AP1 homologs does not appear to be universally conserved even among eudicots. In comparison, the role of FRUITFULL has not been extensively explored in non-model species. We report on the isolation of three AP1/FUL genes from cultivated spinach, Spinacia oleracea L. Two genes, designated SpAPETALA1-1 (SpAP1-1) and SpAPETALA1-2 (SpAP1-2), cluster as paralogous genes within the Caryophyllales AP1 clade. They are highly differentiated in the 3′, carboxyl-end encoding region of the gene following the third amphipathic alpha-helix region, while still retaining some elements of a signature AP1 carboxyl motifs. In situ hybridization studies also demonstrate that the two paralogs have evolved different temporal and spatial expression patterns, and that neither gene is expressed in the developing sepal whorl, suggesting that the AP1 floral organ identity function is not conserved in spinach. The spinach FRUITFULL homolog, SpFRUITFULL (SpFUL), has retained the conserved motif and groups with Caryophyllales FRUITFULL homologs. SpFUL is expressed in leaf as well as in floral tissue, and shows strong expression late in flower development, particularly in the tapetal layer in males, and in the endothecium layer and stigma, in the females. The combined evidence of high rates of non-synonymous substitutions and differential expression patterns supports a scenario in which the AP1 homologs in the spinach AP1/FUL gene family have experienced rapid evolution following duplication. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
The architecture of a flower is tightly linked to the way a plant pollinates, making it one of the most physiologically and ecologically important traits of angiosperms. Floral organ development is proposed to be governed by the activity of three different classes of organ identity genes (the ABC model), and the expression of those genes are regulated by a number of meristem identity genes. Here we use a transgenetic strategy to elucidate the role of one floral meristem identify gene,LEAFY (LFY), in the evolution of floral organogenesis of a self pollinatorIdahoa scapigera and a obligatory out-crosserLeavenworthia crassa in the mustard family, Brassicaceae. By introducing theLFY genes from these two types of pollination habit into the genetic model speciesArabidopsis thaliana, we provide evidence that changes inLFY influenced flower architecture probably by controlling the downstream organ identity genes.  相似文献   

16.
The tomato MADS box gene no. 5 (TM5) is shown here to be expressed in meristematic domains fated to form the three inner whorls-petals, stamens, and gynoecia-of the tomato flower. TM5 is also expressed during organogenesis and in the respective mature organs of these three whorls. This is unlike the major organ identity genes of the MADS box family from Antirrhinum and Arabidopsis, which function in overlapping primordial territories consisting of only two floral whorls each. The developmental relevance of the unique expression pattern of this putative homeotic gene was examined in transgenic plants. In agreement with the expression patterns, antisense RNA of the TM5 gene conferred both early and late alterations of morphogenetic markers. Early defects consist of additional whorls or of a wrong number of organs per whorl. Late, organ-specific changes include evergreen, cauline, and unabscised petals; green, dialytic, and sterile anthers; and sterile carpels and defective styles on which glandular trichomes characteristic of sepals and petals are ectopically formed. However, a complete homeotic transformation of either organ was not observed. The early and late floral phenotypes of TM5 antisense plants suggest that TM5 mediates two unrelated secondary regulatory systems. One system is the early function of the floral meristem identity genes, and the other system is the function of the major floral organ identity genes.  相似文献   

17.
Hepworth SR  Klenz JE  Haughn GW 《Planta》2006,223(4):769-778
The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear “chimeric” at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.Shelley R. Hepworth and Jennifer E. Klenz contributed equally to this work.  相似文献   

18.
The duplicated grass APETALA1/FRUITFULL (AP1/FUL) genes have distinct but overlapping patterns of expression, suggesting their discrete roles in transition to flowering, specification of spikelet meristem identity and specification of floral organ identity. In this study, we analyzed the expression patterns and functions of four AP1/FUL paralogs (BdVRN1, BdFUL2, BdFUL3 and BdFUL4) in Brachypodium distachyon, a model plant for the temperate cereals and related grasses. Among the four genes tested, only BdVRN1 could remember the prolonged cold treatment. The recently duplicated BdVRN1 and BdFUL2 genes were expressed in a highly consistent manner and ectopic expressions of them caused similar phenotypes such as extremely early flowering and severe morphological alterations of floral organs, indicating their redundant roles in floral transition, inflorescence development and floral organ identity. In comparison, ectopic expressions of BdFUL3 and BdFUL4 only caused a moderate early flowering phenotype, suggesting their divergent function. In yeast two‐hybrid assay, both BdVRN1 and BdFUL2 physically interact with SEP proteins but only BdFUL2 is able to form a homodimer. BdVRN1 also interacts weakly with BdFUL2. Our results indicate that, since the separation of AP1/FUL genes in grasses, the process of sub‐ or neo‐functionalization has occurred and paralogs function redundantly and/or separately in flowering competence and inflorescence development.  相似文献   

19.
Wintersweet (Chimonanthus praecox), a deciduous aromatic shrub endemic to China, has high ornamental value for developing beautiful flowers with strong fragrance. The transition from the vegetative to the reproductive phase in wintersweet takes 4-5 years. The molecular mechanism regulating flower development in this basal angiosperm is largely unknown. Here we characterized the molecular features and expression patterns of the C. praecox AGL6-like gene CpAGL6 and investigated its potential role in regulating floral time and organ development via ectopic expression in Arabidopsis thaliana. The expression of CpAGL6 is highly tissue-specific, with the highest level in the middle tepals, moderate levels in inner tepals and carpels, and weak levels in stamen and young leaf tissues. Its dynamic expression in the flower is coincident with tepal opening. Ectopic expression of CpAGL6 in Arabidopsis retarded the vegetative growth and led to precocious flowering, mainly correlated with the inhibition of the floral repressor FLC and promotion of the floral promoters AP1 and FT. Although no ectopic floral organs have been observed, transgenic plants exhibited abnormal stamen and carpel development in later-developing flowers, with fertility reduced to varying degrees. These results suggest that CpAGL6, the AGL6-like gene from the basal angiosperm C. praecox, is a potential E-function regulator involved in specifying floral time and organ identity, functionally homologous to those AGL6-like genes from higher eudicots and monocots.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号