共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy 总被引:1,自引:0,他引:1
C Kraft M Kijanska E Kalie E Siergiejuk SS Lee G Semplicio I Stoffel A Brezovich M Verma I Hansmann G Ammerer K Hofmann S Tooze M Peter 《The EMBO journal》2012,31(18):3691-3703
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)-inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3-interaction region (LIR)-dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1-Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR-dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase. 相似文献
2.
Shunshun Han Can Cui Haorong He Xiaoxu Shen Yuqi Chen Yan Wang Diyan Li Qing Zhu Huadong Yin 《Journal of cellular physiology》2020,235(5):4667-4678
Four and a half LIM domain protein 1 (FHL1) belongs to the FHL protein family and is predominantly expressed in skeletal and cardiac muscle. FHL1 acts as a scaffold during sarcomere assembly and plays a vital role in muscle growth and development. Autophagy is key to skeletal muscle development and regeneration, with its dysfunction associated with a range of muscular pathologies and disorders. In this study, we constructed FHL1-silenced or FHL1-overexpressed myoblasts to investigate its role in autophagy during the differentiation of chicken myoblasts into myotubules. Our data showed that FHL1 contributes to myoblast differentiation as measured through MyoG, MyoD, Myh3, and Mb mRNA expression, MyoG and MyHC protein expression and the morphological characteristics of myoblasts. The results showed that FHL1 silencing inhibited the expression of ATG5 and ATG7, meanwhile, immunofluorescence and immunoprecipitation showed that FHL1 and LC3 interacted to regulate the correct formation of autophagosomes. FHL1 inhibition increased cleaved caspase-3 and PARP abundance and promoted myoblast apoptosis. Furthermore, FHL1 rescued skeletal muscle atrophy through regulating the expression of Atrogin-1 and MuRF1. Taken together, these data suggested that FHL1 regulates chicken myoblast differentiation through its interaction with LC3. 相似文献
3.
Alice Goode Kevin Butler Jed Long James Cavey Daniel Scott Barry Shaw 《Autophagy》2016,12(7):1094-1104
Growing evidence implicates impairment of autophagy as a candidate pathogenic mechanism in the spectrum of neurodegenerative disorders which includes amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS-FTLD). SQSTM1, which encodes the autophagy receptor SQSTM1/p62, is genetically associated with ALS-FTLD, although to date autophagy-relevant functional defects in disease-associated variants have not been described. A key protein-protein interaction in autophagy is the recognition of a lipid-anchored form of LC3 (LC3-II) within the phagophore membrane by SQSTM1, mediated through its LC3-interacting region (LIR), and notably some ALS-FTLD mutations map to this region. Here we show that although representing a conservative substitution and predicted to be benign, the ALS-associated L341V mutation of SQSTM1 is defective in recognition of LC3B. We place our observations on a firm quantitative footing by showing the L341V-mutant LIR is associated with a ~3-fold reduction in LC3B binding affinity and using protein NMR we rationalize the structural basis for the effect. This functional deficit is realized in motor neuron-like cells, with the L341V mutant EGFP-mCherry-SQSTM1 less readily incorporated into acidic autophagic vesicles than the wild type. Our data supports a model in which the L341V mutation limits the critical step of SQSTM1 recruitment to the phagophore. The oligomeric nature of SQSTM1, which presents multiple LIRs to template growth of the phagophore, potentially gives rise to avidity effects which amplify the relatively modest impact of any single mutation on LC3B binding. Over the lifetime of a neuron, impaired autophagy could expose a vulnerability, which ultimately tips the balance from cell survival toward cell death. 相似文献
4.
Natalia von Muhlinen Masato Akutsu Benjamin J. Ravenhill ágnes Foeglein Stuart Bloor Trevor J. Rutherford Stefan M.V. Freund David Komander Felix Randow 《Autophagy》2013,9(5):784-786
Autophagy defends the mammalian cytosol against bacterial invasion. Efficient bacterial engulfment by autophagy requires cargo receptors that bind (a) homolog(s) of the ubiquitin-like protein Atg8 on the phagophore membrane. The existence of multiple ATG8 orthologs in higher eukaryotes suggests that they may perform distinct functions. However, no specific role has been assigned to any mammalian ATG8 ortholog. We recently discovered that the autophagy receptor CALCOCO2/NDP52, which detects cytosol-invading Salmonella enterica serovar Typhimurium (S. Typhimurium), preferentially binds LC3C. The CALCOCO2/NDP52-LC3C interaction is essential for cell-autonomous immunity against cytosol-exposed S. Typhimurium, because cells lacking either protein fail to target bacteria into the autophagy pathway. The selectivity of CALCOCO2/NDP52 for LC3C is determined by a novel LC3C interacting region (CLIR), in which the lack of the key aromatic residue of canonical LIRs is compensated by LC3C-specific interactions. Our findings provide a new layer of regulation to selective autophagy, suggesting that specific interactions between autophagy receptors and the ATG8 orthologs are of biological importance. 相似文献
5.
Aiqin Sun Jing Wei Chandra Childress John H. Shaw IV Ke Peng Genbao Shao 《Autophagy》2017,13(3):522-537
The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy. 相似文献
6.
Andrea E. Rodríguez Camila López-Crisosto Daniel Peña-Oyarzún Daniela Salas Valentina Parra Clara Quiroga 《Autophagy》2016,12(2):287-296
Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells. 相似文献
7.
8.
Xiaofang Cheng Yingli Wang Yukang Gong Faxiang Li Yujiao Guo Shichen Hu 《Autophagy》2016,12(8):1330-1339
FYCO1 (FYVE and coiled-coil domain containing 1) functions as an autophagy adaptor in directly linking autophagosomes with the microtubule-based kinesin motor, and plays an essential role in the microtubule plus end-directed transport of autophagic vesicles. The specific association of FYCO1 with autophagosomes is mediated by its interaction with Atg8-family proteins decorated on the outer surface of autophagosome. However, the mechanistic basis governing the interaction between FYCO1 and Atg8-family proteins is largely unknown. Here, using biochemical and structural analyses, we demonstrated that FYCO1 contains a unique LC3-interacting region (LIR), which discriminately binds to mammalian Atg8 orthologs and preferentially binds to the MAP1LC3A and MAP1LC3B. In addition to uncovering the detailed molecular mechanism underlying the FYCO1 LIR and MAP1LC3A interaction, the determined FYCO1-LIR-MAP1LC3A complex structure also reveals a unique LIR binding mode for Atg8-family proteins, and demonstrates, first, the functional relevance of adjacent sequences C-terminal to the LIR core motif for binding to Atg8-family proteins. Taken together, our findings not only provide new mechanistic insight into FYCO1-mediated transport of autophagosomes, but also expand our understanding of the interaction modes between LIR motifs and Atg8-family proteins in general. 相似文献
9.
10.
Hagen Körschgen Marius Baeken Daniel Schmitt Heike Nagel Christian Behl 《Traffic (Copenhagen, Denmark)》2023,24(12):564-575
The co-chaperone BAG3 is a hub for a variety of cellular pathways via its multiple domains and its interaction with chaperones of the HSP70 family or small HSPs. During aging and under cellular stress conditions in particular, BAG3, together with molecular chaperones, ensures the sequestration of aggregated or aggregation-prone ubiquitinated proteins to the autophagic-lysosomal system via ubiquitin receptors. Accumulating evidence for BAG3-mediated selective autophagy independent of cargo ubiquitination led to analyses predicting a direct interaction of BAG3 with LC3 proteins. Phylogenetically, BAG3 comprises several highly conserved potential LIRs, LC3-interacting regions, which might allow for the direct targeting of BAG3 including its cargo to autophagosomes and drive their autophagic degradation. Based on pull-down experiments, peptide arrays and proximity ligation assays, our results provide evidence of an interaction of BAG3 with LC3B. In addition, we could demonstrate that disabling all predicted LIRs abolished the inducibility of a colocalization of BAG3 with LC3B-positive structures and resulted in a substantial decrease of BAG3 levels within purified native autophagic vesicles compared with wild-type BAG3. These results suggest an autophagic targeting of BAG3 via interaction with LC3B. Therefore, we conclude that, in addition to being a key co-chaperone to HSP70, BAG3 may also act as a cargo receptor for client proteins, which would significantly extend the role of BAG3 in selective macroautophagy and protein quality control. 相似文献
11.
You-Kyung Lee Jin-A Lee You-Kyung Lee Yong-Woo Jun Ha-Eun Choi Yang Hoon Huh Bong-Kiun Kaang Deok-Jin Jang Jin-A Lee 《The EMBO journal》2017,36(8):1100-1116
Macroautophagy allows for bulk degradation of cytosolic components in lysosomes. Overexpression of GFP/RFP-LC3/GABARAP is commonly used to monitor autophagosomes, a hallmark of autophagy, despite artifacts related to their overexpression. Here, we developed new sensors that detect endogenous LC3/GABARAP proteins at the autophagosome using an LC3-interacting region (LIR) and a short hydrophobic domain (HyD). Among HyD-LIR-GFP sensors harboring LIR motifs of 34 known LC3-binding proteins, HyD-LIR(TP)-GFP using the LIR motif from TP53INP2 allowed detection of all LC3/GABARAPs-positive autophagosomes. However, HyD-LIR(TP)-GFP preferentially localized to GABARAP/GABARAPL1-positive autophagosomes in a LIR-dependent manner. In contrast, HyD-LIR(Fy)-GFP using the LIR motif from FYCO1 specifically detected LC3A/B-positive autophagosomes. HyD-LIR(TP)-GFP and HyD-LIR(Fy)-GFP efficiently localized to autophagosomes in the presence of endogenous LC3/GABARAP levels and without affecting autophagic flux. Both sensors also efficiently localized to MitoTracker-positive damaged mitochondria upon mitophagy induction. HyD-LIR(TP)-GFP allowed live-imaging of dynamic autophagosomes upon autophagy induction. These novel autophagosome sensors can thus be widely used in autophagy research. 相似文献
12.
Rozenknop A Rogov VV Rogova NY Löhr F Güntert P Dikic I Dötsch V 《Journal of molecular biology》2011,410(3):477-487
Selective autophagy requires the specific segregation of targeted proteins into autophagosomes. The selectivity is mediated by autophagy receptors, such as p62 and NBR1, which can bind to autophagic effector proteins (Atg8 in yeast, MAP1LC3 protein family in mammals) anchored in the membrane of autophagosomes. Recognition of autophagy receptors by autophagy effectors takes place through an LC3 interaction region (LIR). The canonical LIR motif consists of a WXXL sequence, N-terminally preceded by negatively charged residues. The LIR motif of NBR1 presents differences to this classical LIR motif with a tyrosine residue and an isoleucine residue substituting the tryptophan residue and the leucine residue, respectively. We have determined the structure of the GABARAPL-1/NBR1-LIR complex and studied the influence of the different residues belonging to the LIR motif for the interaction with several mammalian autophagy modifiers (LC3B and GABARAPL-1). Our results indicate that the presence of a tryptophan residue in the LIR motif increases the binding affinity. Substitution by other aromatic amino acids or increasing the number of negatively charged residues at the N-terminus of the LIR motif, however, has little effect on the binding affinity due to enthalpy-entropy compensation. This indicates that different LIRs can interact with autophagy modifiers with unique binding properties. 相似文献
13.
Shuai Huang Ye Li Guihua Sheng Qingwei Meng Qian Hu Xuexiao Gao Zhiyuan Shang Qiubo Lv 《Cell biology international》2021,45(5):1050-1059
Endometrial cancer (EC) constitutes a common female genital tract tumor with a rising incidence rate. Sirtuin 1 (SIRT1) is a member of histone deacetylase, which extensively participates in the progression of aging, cell death, and tumorigenesis. This study explored the effect of SIRT1-mediated LC3 acetylation on autophagy and proliferation of EC cells. SIRT1 expression in EC tissues and adjacent tissues, EC cell lines and normal human epithelial cells was detected. SIRT1 expression was elevated in EC cell lines and tissues. Knockdown of SIRT1 inhibited proliferation, migration, and invasion of EC cells. Then, EC cells were starved in serum-free medium, and levels of autophagy-related proteins were detected. Starvation induced autophagy of EC cells. The starvation-treated EC cells showed an increased SIRT1 expression, a decreased LC3 acetylation level and an increased autophagy level. The proliferation and autophagy of EC cells under different treatments were evaluated. In EC cells transfected with overexpressing SIRT1, LC3 acetylation was inhibited and cell proliferation was promoted. Moreover, overexpressing SIRT1 facilitated growth and autophagy of transplanted tumors in nude mice. In conclusion, SIRT1 promoted autophagy and proliferation of EC cells by reducing acetylation level of LC3. 相似文献
14.
David Colecchia Angela Strambi Sveva Sanzone Carlo Iavarone Matteo Rossi Claudia Dall’Armi Federica Piccioni Arturo Verrotti di Pianella Mario Chiariello 《Autophagy》2012,8(12):1724-1740
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process necessary for normal recycling of cellular constituents and for appropriate response to cellular stress. Although several genes belonging to the core molecular machinery involved in autophagosome formation have been discovered, relatively little is known about the nature of signaling networks controlling autophagy upon intracellular or extracellular stimuli. We discovered ATG8-like proteins (MAP1LC3B, GABARAP and GABARAPL1) as novel interactors of MAPK15/ERK8, a MAP kinase involved in cell proliferation and transformation. Based on the role of these proteins in the autophagic process, we demonstrated that MAPK15 is indeed localized to autophagic compartments and increased, in a kinase-dependent fashion, ATG8-like proteins lipidation, autophagosome formation and SQSTM1 degradation, while decreasing LC3B inhibitory phosphorylation. Interestingly, we also identified a conserved LC3-interacting region (LIR) in MAPK15 responsible for its interaction with ATG8-like proteins, for its localization to autophagic structures and, consequently, for stimulation of the formation of these compartments. Furthermore, we reveal that MAPK15 activity was induced in response to serum and amino-acid starvation and that this stimulus, in turn, required endogenous MAPK15 expression to induce the autophagic process. Altogether, these results suggested a new function for MAPK15 as a regulator of autophagy, acting through interaction with ATG8 family proteins. Also, based on the key role of this process in several human diseases, these results supported the use of this MAP kinase as a potential novel therapeutic target. 相似文献
15.
《Autophagy》2013,9(12):1724-1740
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved catabolic process necessary for normal recycling of cellular constituents and for appropriate response to cellular stress. Although several genes belonging to the core molecular machinery involved in autophagosome formation have been discovered, relatively little is known about the nature of signaling networks controlling autophagy upon intracellular or extracellular stimuli. We discovered ATG8-like proteins (MAP1LC3B, GABARAP and GABARAPL1) as novel interactors of MAPK15/ERK8, a MAP kinase involved in cell proliferation and transformation. Based on the role of these proteins in the autophagic process, we demonstrated that MAPK15 is indeed localized to autophagic compartments and increased, in a kinase-dependent fashion, ATG8-like proteins lipidation, autophagosome formation and SQSTM1 degradation, while decreasing LC3B inhibitory phosphorylation. Interestingly, we also identified a conserved LC3-interacting region (LIR) in MAPK15 responsible for its interaction with ATG8-like proteins, for its localization to autophagic structures and, consequently, for stimulation of the formation of these compartments. Furthermore, we reveal that MAPK15 activity was induced in response to serum and amino-acid starvation and that this stimulus, in turn, required endogenous MAPK15 expression to induce the autophagic process. Altogether, these results suggested a new function for MAPK15 as a regulator of autophagy, acting through interaction with ATG8 family proteins. Also, based on the key role of this process in several human diseases, these results supported the use of this MAP kinase as a potential novel therapeutic target. 相似文献
16.
Yoko Maruyama Yu-Shin Sou Shun Kageyama Takao Takahashi Takashi Ueno Keiji Tanaka Masaaki Komatsu Yoshinobu Ichimura 《Biochemical and biophysical research communications》2014
Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs. 相似文献
17.
18.
TPT1/TCTP (tumor protein, translationally-controlled 1) is highly expressed in tumor cells, known to participate in various cellular activities including protein synthesis, growth and cell survival. In addition, TPT1 was identified as a direct target of the tumor suppressor TP53/p53 although little is known about the mechanism underlying the anti-survival function of TPT1. Here, we describe a role of TPT1 in the regulation of the MTORC1 pathway through modulating the molecular machinery of macroautophagy/autophagy. TPT1 inhibition induced cellular autophagy via the MTORC1 and AMPK pathways, which are inhibited and activated, respectively, during treatment with the MTOR inhibitor rapamycin. We also found that the depletion of TPT1 potentiated rapamycin-induced autophagy by synergizing with MTORC1 inhibition. We further demonstrated that TPT1 knockdown altered the BECN1 interactome, a representative MTOR-independent pathway, to stimulate autophagosome formation, via downregulating BCL2 expression through activating MAPK8/JNK1, and thereby enhancing BECN1-phosphatidylinositol 3-kinase (PtdIns3K)-UVRAG complex formation. Furthermore, reduced TPT1 promoted autophagic flux by modulating not only early steps of autophagy but also autophagosome maturation. Consistent with in vitro findings, in vivo organ analysis using Tpt1 heterozygote knockout mice showed that autophagy is enhanced because of haploinsufficient TPT1 expression. Overall, our study demonstrated the novel role of TPT1 as a negative regulator of autophagy that may have potential use in manipulating various diseases associated with autophagic dysfunction. 相似文献
19.
《Autophagy》2013,9(12):1448-1461
Canonical autophagy is positively regulated by the Beclin 1/phosphatidylinositol 3-kinase class III (PtdIns3KC3) complex that generates an essential phospholipid, phosphatidylinositol 3-phosphate (PtdIns(3)P), for the formation of autophagosomes. Previously, we identified the human WIPI protein family and found that WIPI-1 specifically binds PtdIns(3)P, accumulates at the phagophore and becomes a membrane protein of generated autophagosomes. Combining siRNA-mediated protein downregulation with automated high through-put analysis of PtdIns(3)P-dependent autophagosomal membrane localization of WIPI-1, we found that WIPI-1 functions upstream of both Atg7 and Atg5, and stimulates an increase of LC3-II upon nutrient starvation. Resveratrol-mediated autophagy was shown to enter autophagic degradation in a noncanonical manner, independent of Beclin 1 but dependent on Atg7 and Atg5. By using electron microscopy, LC3 lipidation and GFP-LC3 puncta-formation assays we confirmed these results and found that this effect is partially wortmannin-insensitive. In line with this, resveratrol did not promote phagophore localization of WIPI-1, WIPI-2 or the Atg16L complex above basal level. In fact, the presence of resveratrol in nutrient-free conditions inhibited phagophore localization of WIPI-1. Nevertheless, we found that resveratrol-mediated autophagy functionally depends on canonical-driven LC3-II production, as shown by siRNA-mediated downregulation of WIPI-1 or WIPI-2. From this it is tempting to speculate that resveratrol promotes noncanonical autophagic degradation downstream of the PtdIns(3)P-WIPI-Atg7-Atg5 pathway, by engaging a distinct subset of LC3-II that might be generated at membrane origins apart from canonical phagophore structures. 相似文献
20.
Mauthe M Jacob A Freiberger S Hentschel K Stierhof YD Codogno P Proikas-Cezanne T 《Autophagy》2011,7(12):1448-1461
Canonical autophagy is positively regulated by the Beclin 1/phosphatidylinositol 3-kinase class III (PtdIns3KC3) complex that generates an essential phospholipid, phosphatidylinositol 3-phosphate (PtdIns(3)P), for the formation of autophagosomes. Previously, we identified the human WIPI protein family and found that WIPI-1 specifically binds PtdIns(3)P, accumulates at the phagophore and becomes a membrane protein of generated autophagosomes. Combining siRNA-mediated protein downregulation with automated high through-put analysis of PtdIns(3)P-dependent autophagosomal membrane localization of WIPI-1, we found that WIPI-1 functions upstream of both Atg7 and Atg5, and stimulates an increase of LC3-II upon nutrient starvation. Resveratrol-mediated autophagy was shown to enter autophagic degradation in a noncanonical manner, independent of Beclin 1 but dependent on Atg7 and Atg5. By using electron microscopy, LC3 lipidation and GFP-LC3 puncta-formation assays we confirmed these results and found that this effect is partially wortmannin-insensitive. In line with this, resveratrol did not promote phagophore localization of WIPI-1, WIPI-2 or the Atg16L complex above basal level. In fact, the presence of resveratrol in nutrient-free conditions inhibited phagophore localization of WIPI-1. Nevertheless, we found that resveratrol-mediated autophagy functionally depends on canonical-driven LC3-II production, as shown by siRNA-mediated downregulation of WIPI-1 or WIPI-2. From this it is tempting to speculate that resveratrol promotes noncanonical autophagic degradation downstream of the PtdIns(3)P-WIPI-Atg7-Atg5 pathway, by engaging a distinct subset of LC3-II that might be generated at membrane origins apart from canonical phagophore structures. 相似文献