首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(1):123-136
Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner. Notably, this process implied enhanced production of endo/lysosomal carriers of CHRN, which also contained the membrane remodeler SH3GLB1, the E3 ubiquitin ligase, TRIM63, and the selective autophagy receptor SQSTM1. Furthermore, these vesicles were surrounded by the autophagic marker MAP1LC3A in an ATG7-dependent fashion, and some of them were also positive for the lysosomal marker, LAMP1. While the amount of vesicles containing endocytosed CHRN strongly augmented in the absence of ATG7 as well as upon denervation as a model for long-term atrophy, denervation-induced increase in autophagic CHRN vesicles was completely blunted in the absence of TRIM63. On a similar note, in trim63?/? mice denervation-induced upregulation of SQSTM1 and LC3-II was abolished and endogenous SQSTM1 did not colocalize with CHRN vesicles as it did in the wild type. SQSTM1 and LC3-II coprecipitated with surface-labeled/endocytosed CHRN and SQSTM1 overexpression significantly induced CHRN vesicle formation. Taken together, our data suggested that selective autophagy regulates the basal and atrophy-induced turnover of the pentameric transmembrane protein, CHRN, and that TRIM63, together with SH3GLB1 and SQSTM1 regulate this process.  相似文献   

2.
Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner. Notably, this process implied enhanced production of endo/lysosomal carriers of CHRN, which also contained the membrane remodeler SH3GLB1, the E3 ubiquitin ligase, TRIM63, and the selective autophagy receptor SQSTM1. Furthermore, these vesicles were surrounded by the autophagic marker MAP1LC3A in an ATG7-dependent fashion, and some of them were also positive for the lysosomal marker, LAMP1. While the amount of vesicles containing endocytosed CHRN strongly augmented in the absence of ATG7 as well as upon denervation as a model for long-term atrophy, denervation-induced increase in autophagic CHRN vesicles was completely blunted in the absence of TRIM63. On a similar note, in trim63−/− mice denervation-induced upregulation of SQSTM1 and LC3-II was abolished and endogenous SQSTM1 did not colocalize with CHRN vesicles as it did in the wild type. SQSTM1 and LC3-II coprecipitated with surface-labeled/endocytosed CHRN and SQSTM1 overexpression significantly induced CHRN vesicle formation. Taken together, our data suggested that selective autophagy regulates the basal and atrophy-induced turnover of the pentameric transmembrane protein, CHRN, and that TRIM63, together with SH3GLB1 and SQSTM1 regulate this process.  相似文献   

3.
The small molecular weight G-protein RAB7 is localized to both early and late endosomes and has been shown to be critical for trafficking through the endocytic pathway. The role of RAB7 in the endocytic pathway has been controversial, with some groups reporting that it regulates trafficking from early to late endosomes and others ascribing its role to trafficking between late endosomes and lysosomes. In this study, we use RNA interference to identify the exact step RAB7 regulates in the movement of the epidermal growth factor receptor (EGFR) from the cell surface to the lysosome. In the absence of RAB7, trafficking of the EGF·EGFR complex through the early endosome to the late endosome/multivesicular body (LE/MVB) does not change, but exiting from the LE/MVB is blocked. Ultrastructural analysis reveals that RAB7 is not required for formation of intraluminal vesicles of the LE/MVB, since RAB7-deficient cells have an increased number of enlarged LE/MVBs densely packed with intraluminal vesicles. Biochemical data indicate that the EGFR complex is sequestered in these intraluminal vesicles. Together, these data provide evidence that RAB7 is required for the transfer of cargo from the LE/MVB to the lysosome and for endocytic organelle maintenance.The endocytic pathway regulates a number of fundamental cellular processes. These include the uptake of nutrients, immune response, intracellular transport, and regulation of cell surface receptor signaling (1). Disruption of normal endocytic trafficking can affect cellular homeostasis and lead to changes in cell physiology that range from hyperproliferation to cell death. Understanding the molecular regulation of endocytic trafficking will provide a better understanding of basic cell biology as well as identify potential molecular targets for diseases characterized by defects in endocytic trafficking.By following the postinternalization events of cell surface receptors, considerable work has been done to elucidate the molecular details of the endocytic pathway (2). Many cell surface receptors, either constitutively or in response to ligand, use this degradative pathway to regulate receptor and/or ligand levels. Following clathrin-mediated internalization, the endocytic pathway is composed of a series of dynamic stages that progressively shuttle cargo from clathrin-coated vesicles to early endosomes, to late endosomes/multivesicular bodies (LE/MVBs),2 and finally to lysosomes for degradation. Each of these endocytic stages is defined by the morphology and protein composition of the organelle.Endocytic trafficking is coordinated by a variety of proteins that regulate endosome maturation, movement, fission, and fusion. Primary among these are the small molecular weight G-proteins called RABs (3). Rab proteins are members of the Ras superfamily of GTPases that cycle between GTP-bound active and GDP-bound inactive states. The nucleotide bound state of the RAB determines whether it can interact with downstream effectors. Individual RAB proteins have been shown to act as hubs that regulate distinct trafficking steps temporally and spatially by facilitating vesicle motility, tethering, and fusion (4, 5).Rab7 localizes to both the early endosome and the LE/MVB and has been shown to be a necessary component of endocytic trafficking and lysosomal degradation (6). However, there is no consensus as to the exact molecular function of RAB7 in the endocytic pathway. Some reports have implicated RAB7 in regulating cargo movement out of early endosomes (710), whereas others have reported it to function in the more distal process of lysosomal delivery from LE/MVBs (11, 12). Live cell imaging indicates that RAB7 replaces RAB5 as cargo is trafficked through endocytic compartments (10, 13). However, it remains unclear if the presence of RAB7 indicates that it is immediately functional or if it is positioning itself to be used later in the endocytic pathway. Alternatively, as has been proposed in Caenorhabditis elegans, Rab7 may regulate multiple endocytic steps (14).Previous attempts to understand the function of RAB7 have relied primarily on overexpression of wild type or mutant RAB7 (11, 12, 15, 16). This approach carries the caveat that high levels of the exogenous protein increase the potential for nonphysiological interactions between an overexpressed RAB and downstream RAB effectors. This concern was highlighted by a recent analysis that showed promiscuity between a variety of RABs and RAB effectors (17). To overcome these issues, we have used the alternative approach of depleting endogenous RAB7 with siRNA and examining EGF·EGFR endocytic trafficking in the absence of RAB7.In this study, we show that RAB7 is required for lysosomal degradation of the EGF·EGFR complex. Upon dissecting the endocytic pathway of RAB7-deficient cells, we find that cargo can proceed through EEA1 (early endosome antigen 1)-positive early endosomes and into CD63-positive LE/MVB. However, in the absence of RAB7, the EGF·EGFR complex does not exit the LE/MVB and is retained in its intraluminal vesicles. This disrupted trafficking is mirrored by an altered equilibrium between the endocytic organelles, as indicated by the accumulation of enlarged, densely packed LE/MVB and a decrease in the size and number of lysosomes. Based on these data, we have generated a model that RAB7 is dispensable for EGFR endocytic trafficking from the cell surface to the intraluminal vesicles of the LE/MVB but is required for fusion of the LE/MVB and the lysosome.  相似文献   

4.
Evasion of apoptosis, which enables cells to survive and proliferate under metabolic stress, is one of the hallmarks of cancer. We have recently reported that SH3GLB1/Bif-1 functions as a haploinsufficient tumor suppressor to prevent the acquisition of apoptosis resistance and malignant transformation during Myc-driven lymphomagenesis. SH3GLB1 is a membrane curvature-inducing protein that interacts with BECN1 though UVRAG and regulates the post-Golgi trafficking of membrane-integrated ATG9A for autophagy. At the premalignant stage, allelic loss of Sh3glb1 enhances Myc-induced chromosomal instability and results in the upregulation of anti-apoptotic proteins, including MCL1 and BCL2L1. Notably, we found that Sh3glb1 haploinsufficiency increases mitochondrial mass in overproliferated prelymphomatous Eμ-Myc cells. Moreover, loss of Sh3glb1 suppresses autophagy-dependent mitochondrial clearance (mitophagy) in PARK2/Parkin-expressing mouse embryonic fibroblasts (MEFs) treated with the mitochondrial uncoupler CCCP. Interestingly, PARK2-expressing Sh3glb1-deficient cells accumulate ER-associated immature autophagosome-like structures after treatment with CCCP. Taken together, we propose a model of mitophagy in which SH3GLB1 together with the class III phosphatidylinositol 3-kinase complex II (PIK3C3CII) (PIK3R4-PIK3C3-BECN1-UVRAG) regulates the trafficking of ATG9A-containing Golgi-derived membranes (A9+GDMs) to damaged mitochondria for autophagosome formation to counteract oncogene-driven tumorigenesis.  相似文献   

5.
The mechanisms of tumor cell dissemination and the contribution of membrane trafficking in this process are poorly understood. Through a functional siRNA screening of human RAB GTPases, we found that RAB2A, a protein essential for ER‐to‐Golgi transport, is critical in promoting proteolytic activity and 3D invasiveness of breast cancer (BC) cell lines. Remarkably, RAB2A is amplified and elevated in human BC and is a powerful and independent predictor of disease recurrence in BC patients. Mechanistically, RAB2A acts at two independent trafficking steps. Firstly, by interacting with VPS39, a key component of the late endosomal HOPS complex, it controls post‐endocytic trafficking of membrane‐bound MT1‐MMP, an essential metalloprotease for matrix remodeling and invasion. Secondly, it further regulates Golgi transport of E‐cadherin, ultimately controlling junctional stability, cell compaction, and tumor invasiveness. Thus, RAB2A is a novel trafficking determinant essential for regulation of a mesenchymal invasive program of BC dissemination.  相似文献   

6.
Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by 5 mutations in the RAB7A gene, a ubiquitously expressed GTPase controlling late endocytic trafficking. In neurons, RAB7A also controls neuronal-specific processes such as NTF (neurotrophin) trafficking and signaling, neurite outgrowth and neuronal migration. Given the involvement of macroautophagy/autophagy in several neurodegenerative diseases and considering that RAB7A is fundamental for autophagosome maturation, we investigated whether CMT2B-causing mutants affect the ability of this gene to regulate autophagy. In HeLa cells, we observed a reduced localization of all CMT2B-causing RAB7A mutants on autophagic compartments. Furthermore, compared to expression of RAB7AWT, expression of these mutants caused a reduced autophagic flux, similar to what happens in cells expressing the dominant negative RAB7AT22N mutant. Consistently, both basal and starvation-induced autophagy were strongly inhibited in skin fibroblasts from a CMT2B patient carrying the RAB7AV162M mutation, suggesting that alteration of the autophagic flux could be responsible for neurodegeneration.  相似文献   

7.
We have previously established that the ABCA1 transporter, which plays a critical role in the lipidation of extracellular apolipoprotein acceptors, traffics between late endocytic vesicles and the cell surface (Neufeld, E. B., Remaley, A. T., Demosky, S. J., Jr., Stonik, J. A., Cooney, A. M., Comly, M., Dwyer, N. K., Zhang, M., Blanchette-Mackie, J., Santamarina-Fojo, S., and Brewer, H. B., Jr. (2001) J. Biol. Chem. 276, 27584-27590). The present study provides evidence that ABCA1 in late endocytic vesicles plays a role in cellular lipid efflux. Late endocytic trafficking was defective in Tangier disease fibroblasts that lack functional ABCA1. Consistent with a late endocytic protein trafficking defect, the hydrophobic amine U18666A retained NPC1 in abnormally tubulated, cholesterol-poor, Tangier disease late endosomes, rather than cholesterol-laden lysosomes, as in wild type fibroblasts. Consistent with a lipid trafficking defect, Tangier disease late endocytic vesicles accumulated both cholesterol and sphingomyelin and were immobilized in a perinuclear localization. The excess cholesterol in Tangier disease late endocytic vesicles retained massive amounts of NPC1, which traffics lysosomal cholesterol to other cellular sites. Exogenous apoA-I abrogated the cholesterol-induced retention of NPC1 in wild type but not in Tangier disease late endosomes. Adenovirally mediated ABCA1-GFP expression in Tangier disease fibroblasts corrected the late endocytic trafficking defects and restored apoA-I-mediated cholesterol efflux. ABCA1-GFP expression in wild type fibroblasts also reduced late endosome-associated NPC1, induced a marked uptake of fluorescent apoA-I into ABCA1-GFP-containing endosomes (that shuttled between late endosomes and the cell surface), and enhanced apoA-I-mediated cholesterol efflux. The combined results of this study suggest that ABCA1 converts pools of late endocytic lipids that retain NPC1 to pools that can associate with endocytosed apoA-I, and be released from the cell as nascent high density lipoprotein.  相似文献   

8.
The small GTPase Rab5, which cycles between GDP-bound inactive and GTP-bound active forms, plays essential roles in membrane budding and trafficking in the early endocytic pathway. Rab5 is activated by various vacuolar protein sorting 9 (VPS9) domain-containing guanine nucleotide exchange factors. Rab21, Rab22, and Rab31 (members of the Rab5 subfamily) are also involved in the trafficking of early endosomes. Mechanisms controlling the activation Rab5 subfamily members remain unclear. RIN (Ras and Rab interactor) represents a family of multifunctional proteins that have a VPS9 domain in addition to Src homology 2 (SH2) and Ras association domains. We investigated whether RIN family members act as guanine nucleotide exchange factors (GEFs) for the Rab5 subfamily on biochemical and cell morphological levels. RIN3 stimulated the formation of GTP-bound Rab31 in cell-free and in cell GEF activity assays. RIN3 also formed enlarged vesicles and tubular structures, where it colocalized with Rab31 in HeLa cells. In contrast, RIN3 did not exhibit any apparent effects on Rab21. We also found that serine to alanine substitutions in the sequences between SH2 and RIN family homology domain of RIN3 specifically abolished its GEF action on Rab31 but not Rab5. We examined whether RIN3 affects localization of the cation-dependent mannose 6-phosphate receptor (CD-MPR), which is transported between trans-Golgi network and endocytic compartments. We found that RIN3 partially translocates CD-MPR from the trans-Golgi network to peripheral vesicles and that this is dependent on its Rab31-GEF activity. These results indicate that RIN3 specifically acts as a GEF for Rab31.  相似文献   

9.
SH3GLB, a new endophilin-related protein family featuring an SH3 domain   总被引:3,自引:0,他引:3  
A new cDNA encoding a protein of 362 amino acids designated SH3GLB1, for SH3 domain GRB2-like endophilin B1, was identified in a yeast two-hybrid screen devoted to the identification of new partners interacting with the apoptosis inducer Bax. SH3GLB1 shows strong similarities to the SH3 domain-containing proteins of the endophilin family and presumably represents the human homologue of the potential Caenorhabditis elegans SH3 containing-protein identified by systematic translation of the C. elegans genome (GenBank Accession No. U46675). Reversing prey to bait in the yeast screen, a second protein, SH3GLB2, of 395 amino acids showing 65% identity to SH3GLB1 was identified as an interacting partner of SH3GLB1. The discovery of SH3GLB1 itself in the screening with SH3GLB1 as a bait and further mapping experiments demonstrated that a core coiled-coil-type region is required for the formation of SH3GLB homo- and/or heterodimers, whereas the SH3 domain is not involved in these interactions. Interestingly, the similarities with the endophilin proteins cover the entire sequence of the SH3GLB family, suggesting a common fold and presumably a common mode of action. Furthermore, SH3GLB members colocalize to the cytoplasmic compartment of the cell together with Bax and are excluded from the nucleus. SH3GLB1 and SH3GLB2 do not significantly influence the onset and time course of Bax-mediated apoptosis in HeLa or 293T cells.  相似文献   

10.
11.
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.  相似文献   

12.
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal and rapamycin-induced conditions. Correlating the activity of RAB3GAP1/2 with ATG3 and ATG16L1 and analyzing ATG5 punctate structures, we illustrate that the RAB3GAPs modulate autophagosomal biogenesis. Significant levels of RAB3GAP1/2 colocalize with members of the Atg8 family at lipid droplets, and their autophagy modulatory activity depends on the GTPase-activating activity of RAB3GAP1 but is independent of the RAB GTPase RAB3. Moreover, we analyzed RAB3GAP1/2 in relation to the previously reported suppressive autophagy modulators FEZ1 and FEZ2 and demonstrate that both reciprocally regulate autophagy. In conclusion, we identify RAB3GAP1/2 as novel conserved factors of the autophagy and proteostasis network.  相似文献   

13.
《Autophagy》2013,9(12):2297-2309
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal and rapamycin-induced conditions. Correlating the activity of RAB3GAP1/2 with ATG3 and ATG16L1 and analyzing ATG5 punctate structures, we illustrate that the RAB3GAPs modulate autophagosomal biogenesis. Significant levels of RAB3GAP1/2 colocalize with members of the Atg8 family at lipid droplets, and their autophagy modulatory activity depends on the GTPase-activating activity of RAB3GAP1 but is independent of the RAB GTPase RAB3. Moreover, we analyzed RAB3GAP1/2 in relation to the previously reported suppressive autophagy modulators FEZ1 and FEZ2 and demonstrate that both reciprocally regulate autophagy. In conclusion, we identify RAB3GAP1/2 as novel conserved factors of the autophagy and proteostasis network.  相似文献   

14.
The mechanisms by which tumor cells metastasize and the role of endocytic proteins in this process are not well understood. We report that overexpression of the GTPase RAB5A, a master regulator of endocytosis, is predictive of aggressive behavior and metastatic ability in human breast cancers. RAB5A is necessary and sufficient to promote local invasion and distant dissemination of various mammary and nonmammary tumor cell lines, and this prometastatic behavior is associated with increased intratumoral cell motility. Specifically, RAB5A is necessary for the formation of invadosomes, membrane protrusions specialized in extracellular matrix (ECM) degradation. RAB5A promotes RAB4- and RABENOSYN-5–dependent endo/exocytic cycles (EECs) of critical cargos (membrane-type 1 matrix metalloprotease [MT1-MMP] and β3 integrin) required for invadosome formation in response to motogenic stimuli. This trafficking circuitry is necessary for spatially localized hepatocyte growth factor (HGF)/MET signaling that drives invasive, proteolysis-dependent chemotaxis in vitro and for conversion of ductal carcinoma in situ to invasive ductal carcinoma in vivo. Thus, RAB5A/RAB4 EECs promote tumor dissemination by controlling a proteolytic, mesenchymal invasive program.  相似文献   

15.
Myrosin cells, which accumulate myrosinase to produce toxic compounds when they are ruptured by herbivores, form specifically along leaf veins in Arabidopsis thaliana. However, the mechanism underlying this pattern formation is unknown. Here, we show that myrosin cell development requires the endocytosis-mediated polar localization of the auxin-efflux carrier PIN1 in leaf primordia. Defects in the endocytic/vacuolar SNAREs (syp22 and syp22 vti11) enhanced myrosin cell development. The syp22 phenotype was rescued by expressing SYP22 under the control of the PIN1 promoter. Additionally, myrosin cell development was enhanced either by lacking the activator of endocytic/vacuolar RAB5 GTPase (VPS9A) or by PIN1 promoter-driven expression of a dominant-negative form of RAB5 GTPase (ARA7). By contrast, myrosin cell development was not affected by deficiencies of vacuolar trafficking factors, including the vacuolar sorting receptor VSR1 and the retromer components VPS29 and VPS35, suggesting that endocytic pathway rather than vacuolar trafficking pathway is important for myrosin cell development. The phosphomimic PIN1 variant (PIN1-Asp), which is unable to be polarized, caused myrosin cells to form not only along leaf vein but also in the intervein leaf area. We propose that Brassicales plants might arrange myrosin cells near vascular cells in order to protect the flux of nutrients and water via polar PIN1 localization.  相似文献   

16.
17.
Endosomal trafficking plays an integral role in various eukaryotic cell activities and serves as a basis for higher-order functions in multicellular organisms. An understanding of the importance of endosomal trafficking in plants is rapidly developing, but its molecular mechanism is mostly unknown. Several key regulators of endosomal trafficking, including RAB5, which regulates diverse endocytic events in animal cells, are highly conserved. However, the identification of lineage-specific regulators in eukaryotes indicates that endosomal trafficking is diversified according to distinct body plans and lifestyles. In addition to orthologues of metazoan RAB5, land plants possess a unique RAB5 molecule, which is one of the most prominent features of plant RAB GTPase organization. Plants have also evolved a unique repertoire of SNAREs, the most distinctive of which are diverse VAMP7-related longins, including plant-unique VAMP72 derivatives. Here, we demonstrate that a plant-unique RAB5 protein, ARA6, acts in an endosomal trafficking pathway in Arabidopsis thaliana. ARA6 modulates the assembly of a distinct SNARE complex from conventional RAB5, and has a functional role in the salinity stress response. Our results indicate that plants possess a unique endosomal trafficking network and provide the first indication of a functional link between a specific RAB and a specific SNARE complex in plants.  相似文献   

18.
Macroautophagy is a conserved degradative pathway in which a double-membrane compartment sequesters cytoplasmic cargo and delivers the contents to lysosomes for degradation. Efficient formation and maturation of autophagic vesicles, so-called phagophores that are precursors to autophagosomes, and their subsequent trafficking to lysosomes relies on the activity of small RAB GTPases, which are essential factors of cellular vesicle transport systems. The activity of RAB GTPases is coordinated by upstream factors, which include guanine nucleotide exchange factors (RAB GEFs) and RAB GTPase activating proteins (RAB GAPs). A role in macroautophagy regulation for different TRE2-BUB2-CDC16 (TBC) domain-containing RAB GAPs has been established. Recently, however, a positive modulation of macroautophagy has also been demonstrated for the TBC domain-free RAB3GAP1/2, adding to the family of RAB GAPs that coordinate macroautophagy and additional cellular trafficking pathways.  相似文献   

19.
Qian J  Atkinson J  Manor D 《Biochemistry》2006,45(27):8236-8242
Tocopherol transfer protein (TTP) regulates vitamin E status by facilitating the secretion of tocopherol from liver to circulating lipoproteins. Heritable mutations in the ttpA gene, encoding for TTP, result in ataxia with vitamin E deficiency (AVED) syndrome, typified by low vitamin E levels and a plethora of neurological disorders. The molecular mechanisms by which TTP facilitates tocopherol secretion are presently unknown. We recently showed that vitamin E is taken up by hepatocytes through an endocytic process and that, shortly following uptake, the vitamin is found primarily in lysosomes. We showed further that TTP is localized to late endocytic vesicles and that it facilitates the intracellular trafficking of tocopherol from lysosomes to the plasma membrane. To gain insight into the molecular mechanisms that underlie TTP actions, we studied the physiological impact of three naturally occurring heritable mutations in the ttpA gene (the R59W, R221W, and A120T substitutions). We found that these mutations impair the ability of TTP to facilitate the secretion of vitamin E from cells. Furthermore, the degree of impairment corresponded to the severity of the AVED pathology associated with each mutation. In cells that express mutated TTP proteins, vitamin E did not traffic to the plasma membrane and remained "trapped" in lysosomes. In addition, we observed that substitution mutations that cause the AVED syndrome impart a marked instability on the TTP protein. These observations suggest that the physiological role of TTP is anchored in its ability to direct vitamin E trafficking from the endocytic compartment to transport vesicles that deliver the vitamin to the site of secretion at the plasma membrane.  相似文献   

20.
Myosin VI is a minus-end directed actin-based molecular motor implicated in uncoated endocytic vesicle transport. Recent kinetic studies have shown that myosin VI displays altered ADP release kinetics under different load conditions allowing myosin VI to serve alternately as a transporter or as an actin tether. We theorized that one potential regulatory event to modulate between these kinetic choices is phosphorylation at a conserved site, threonine 406 (T406) in the myosin VI motor domain. Alterations mimicking the phosphorylated (T406E) and dephosphorylated state (T406A) were introduced into a GFP-myosin VI fusion (GFP-M6). Live cell imaging revealed that GFP-M6(T406E) expression changed the path myosin VI took in its transport of uncoated endocytic vesicles. Rather than routing vesicles inwards as seen in GFP-M6 and GFP-M6(T406A) expressing cells, GFP-M6(T406E) moved vesicles into clusters at distinct peripheral sites. GFP-M6(T406E) expression also increased the density of the actin cytoskeleton. Filaments were enriched at the vesicle cluster sites. This was not due to a gross redistribution of the actin polymerization machinery. Instead the filament density correlated to the fixed positioning of GFP-M6(T406E)-associated vesicles on F-actin, leading to inhibition of actin depolymerization. Our study suggests that phosphorylation at T406 changes the nature of myosin VI's interaction with actin in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号