首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Benoit Pasquier 《Autophagy》2015,11(4):725-726
Autophagy plays an important role in cancer and it has been suggested that it functions not only as a tumor suppressor pathway to prevent tumor initiation, but also as a prosurvival pathway that helps tumor cells endure metabolic stress and resist death triggered by chemotherapeutic agents. We recently described the discovery of inhibitors of PIK3C3/Vps34 (phosphatidylinositol 3-kinase, catalytic subunit type 3), the lipid kinase component of the class III phosphatidylinositol 3-kinase (PtdIns3K). This PtdIns3K isoform has attracted significant attention in recent years because of its role in autophagy. Following chemical optimization we identified SAR405, a low molecular mass kinase inhibitor of PIK3C3, highly potent and selective with regard to other lipid and protein kinases. We demonstrated that inhibiting the catalytic activity of PIK3C3 disrupts vesicle trafficking from late endosomes to lysosomes. SAR405 treatment also inhibits autophagy induced either by starvation or by MTOR (mechanistic target of rapamycin) inhibition. Finally our results show that combining SAR405 with everolimus, the FDA-approved MTOR inhibitor, results in a significant synergy on the reduction of cell proliferation using renal tumor cells. This result indicates a potential therapeutic application for PIK3C3 inhibitors in cancer.  相似文献   

2.
Jaber N  Dou Z  Lin RZ  Zhang J  Zong WX 《Autophagy》2012,8(4):707-708
PIK3C3/Vps34 is the class III PtdIns3K that is evolutionarily conserved from yeast to mammals. Its central role in mammalian autophagy has been suggested through the use of pharmacological inhibitors and the study of its binding partners. However, the precise role of PIK3C3 in mammals is not clear. Using mouse strains that allow tissue-specific deletion of PIK3C3, we have described an essential role of PIK3C3 in regulating autophagy, and liver and heart function.  相似文献   

3.
Autophagy is an important catabolic program to respond to a variety of cellular stresses by forming a double membrane vesicle, autophagosome. Autophagy plays key roles in various cellular functions. Accordingly, dysregulation of autophagy is closely associated with diseases such as diabetes, neurodegenerative diseases, cardiomyopathy, and cancer. In this sense, autophagy is emerging as an important therapeutic target for disease control. Among the autophagy machineries, PIK3C3/VPS34 complex functions as an autophagy-triggering kinase to recruit the subsequent autophagy protein machineries on the phagophore membrane. Accumulating evidence showing that inhibition of PIK3C3/VPS34 complex successfully inhibits autophagy makes the complex an attractive target for developing autophagy inhibitors. However, one concern about PIK3C3/VPS34 complex is that many different PIK3C3/VPS34 complexes have distinct cellular functions. In this study, we have developed an in vitro PIK3C3/VPS34 complex monitoring assay for autophagy inhibitor screening in a high-throughput assay format instead of targeting the catalytic activity of the PIK3C3/VPS34 complex, which shuts down all PIK3C3/VPS34 complexes. We performed in vitro reconstitution of an essential autophagy-promoting PIK3C3/VPS34 complex, Vps34–Beclin1–ATG14L complex, in a microwell plate (96-well format) and successfully monitored the complex formation in many different conditions. This PIK3C3/VPS34 complex protein assay would provide a reliable tool for the screening of autophagy-specific inhibitors.  相似文献   

4.
Autophagy is a tightly regulated lysosomal degradation pathway for maintaining cellular homeostasis and responding to stresses. Beclin 1 and its interacting proteins, including the class III phosphatidylinositol-3 kinase Vps34, play crucial roles in autophagy regulation in mammals. We identified nuclear receptor binding factor 2 (Nrbf2) as a Beclin 1-interacting protein from Becn1−/−;Becn1-EGFP/+ mouse liver and brain. We also found that Nrbf2-Beclin 1 interaction required the N terminus of Nrbf2. We next used the human retinal pigment epithelial cell line RPE-1 as a model system and showed that transiently knocking down Nrbf2 by siRNA increased autophagic flux under both nutrient-rich and starvation conditions. To investigate the mechanism by which Nrbf2 regulates autophagy, we demonstrated that Nrbf2 interacted and colocalized with Atg14L, suggesting that Nrbf2 is a component of the Atg14L-containing Beclin 1-Vps34 complex. Moreover, ectopically expressed Nrbf2 formed cytosolic puncta that were positive for isolation membrane markers. These results suggest that Nrbf2 is involved in autophagosome biogenesis. Furthermore, we showed that Nrbf2 deficiency led to increased intracellular phosphatidylinositol-3 phosphate levels and diminished Atg14L-Vps34/Vps15 interactions, suggesting that Nrbf2-mediated Atg14L-Vps34/Vps15 interactions likely inhibit Vps34 activity. Therefore, we propose that Nrbf2 may interact with the Atg14L-containing Beclin 1-Vps34 protein complex to modulate protein-protein interactions within the complex, leading to suppression of Vps34 activity, autophagosome biogenesis, and autophagic flux. This work reveals a novel aspect of the intricate mechanism for the Beclin 1-Vps34 protein-protein interaction network to achieve precise control of autophagy.  相似文献   

5.
NRBF2/Atg38 has been identified as the fifth subunit of the macroautophagic/autophagic class III phosphatidylinositol 3-kinase (PtdIns3K) complex, along with ATG14/Barkor, BECN1/Vps30, PIK3R4/p150/Vps15 and PIK3C3/Vps34. However, its functional mechanism and regulation are not fully understood. Here, we report that NRBF2 is a fine tuning regulator of PtdIns3K controlled by phosphorylation. Human NRBF2 is phosphorylated by MTORC1 at S113 and S120. Upon nutrient starvation or MTORC1 inhibition, NRBF2 phosphorylation is diminished. Phosphorylated NRBF2 preferentially interacts with PIK3C3/PIK3R4. Suppression of NRBF2 phosphorylation by MTORC1 inhibition alters its binding preference from PIK3C3/PIK3R4 to ATG14/BECN1, leading to increased autophagic PtdIns3K complex assembly, as well as enhancement of ULK1 protein complex association. Consequently, NRBF2 in its unphosphorylated form promotes PtdIns3K lipid kinase activity and autophagy flux, whereas its phosphorylated form blocks them. This study reveals NRBF2 as a critical molecular switch of PtdIns3K and autophagy activation, and its on/off state is precisely controlled by MTORC1 through phosphorylation.  相似文献   

6.
The 2 C. elegans homologs of Atg8, LGG-1 and LGG-2, show differential function in the degradation of protein aggregates during embryogenesis. LGG-1 is essential for the degradation of various protein aggregates, while LGG-2 has cargo-specific and developmental stage-specific roles. LGG-1 and LGG-2 differentially interact with autophagy substrates and ATG proteins. LGG-1 and LGG-2 possess 2 hydrophobic pockets, the W-site and the L-site, which recognize the LIR motif in Atg8-binding proteins. The plasticity of the W-site and the size and shape of the L-site differ between LGG-1 and LGG-2, thus determining their preferences for distinct LIR motifs. The N-terminal tails of LGG-1 and LGG-2 adopt unique closed and open conformations, respectively, which may result in distinct membrane tethering and fusion activities. LGG-1 and LGG-2 have different affinities for ATG-7 and ATG-3, and lipidation of LGG-2 is regulated by levels of lipidated LGG-1. Taken together, the structural differences between LGG-1 and LGG-2 provide insights into their differential functions in the aggrephagy pathway.  相似文献   

7.
The actin nucleator actin-related protein complex(Arp2/3) is composed of seven subunits: Arp2,Arp3, p40/ARPC1(P40), p34/ARPC2(P34), p21/ARPC3(P21), p20/ARPC4(P20), and p16/ARPC5(P16). Arp2/3 plays crucial roles in a variety of cellular activities through regulation of actin polymerization. Autographa californica multiple nucleopolyhedrovirus(Ac MNPV), one of the beststudied alphabaculoviruses, induces Arp2/3 nuclear relocation and mediates nuclear actin polymerization to assist in virus replication. We have demonstrated that Ac34, a viral late-gene product, induces translocation of the P40 subunit of Arp2/3 to the nucleus during Ac MNPV infection. However, it remains unknown whether Ac34 could relocate other Arp2/3 subunits to the nucleus. In this study, the effects of the viral protein Ac34 on the distribution of these subunits were studied by an immunofluorescence assay. Arp2, P34, P21, and P20 cloned from Spodoptera frugiperda(Sf9) cells showed mainly cytoplasmic localization and were relocated to the nucleus in the presence of Ac34. In addition, Arp3 was localized in the cytoplasm in both the presence and absence of Ac34, and P16 showed whole-cell localization. In contrast to Sf9 cells, all subunits of mammalian Arp2/3 showed no nuclear relocation in the presence of Ac34. Co-immunoprecipitation analysis of the interaction between Ac34 and Arp2/3 subunits revealed that Ac34 bound to P40,P34, and P20 of Sf9 cells. However, none of the subunits of mammalian Arp2/3 interacted with Ac34, indicating that protein-protein interaction is essential for Ac34 to relocate Arp2/3 subunits to the nucleus.  相似文献   

8.
The mitotic checkpoint prevents cells with unaligned chromosomes from prematurely exiting mitosis by inhibiting the anaphase-promoting complex/cyclosome (APC/C) from targeting key proteins for ubiquitin-mediated proteolysis. We have examined the mechanism by which the checkpoint inhibits the APC/C by purifying an APC/C inhibitory factor from HeLa cells. We call this factor the mitotic checkpoint complex (MCC) as it consists of hBUBR1, hBUB3, CDC20, and MAD2 checkpoint proteins in near equal stoichiometry. MCC inhibitory activity is 3,000-fold greater than that of recombinant MAD2, which has also been shown to inhibit APC/C in vitro. Surprisingly, MCC is not generated from kinetochores, as it is also present and active in interphase cells. However, only APC/C isolated from mitotic cells was sensitive to inhibition by MCC. We found that the majority of the APC/C in mitotic lysates is associated with the MCC, and this likely contributes to the lag in ubiquitin ligase activity. Importantly, chromosomes can suppress the reactivation of APC/C. Chromosomes did not affect the inhibitory activity of MCC or the stimulatory activity of CDC20. We propose that the preformed interphase pool of MCC allows for rapid inhibition of APC/C when cells enter mitosis. Unattached kinetochores then target the APC/C for sustained inhibition by the MCC.  相似文献   

9.
The Atg2–Atg18 complex acts in parallel to Atg8 and regulates Atg9 recycling from phagophore assembly site (PAS) during autophagy in yeast. Here we show that in Drosophila, both Atg9 and Atg18 are required for Atg8a puncta formation, unlike Atg2. Selective autophagic degradation of ubiquitinated proteins is mediated by Ref(2)P/p62. The transmembrane protein Atg9 accumulates on refractory to Sigma P (Ref(2)P) aggregates in Atg7, Atg8a and Atg2 mutants. No accumulation of Atg9 is seen on Ref(2)P in cells lacking Atg18 or Vps34 lipid kinase function, while the Atg1 complex subunit FIP200 is recruited. The simultaneous interaction of Atg18 with both Atg9 and Ref(2)P raises the possibility that Atg18 may facilitate selective degradation of ubiquitinated protein aggregates by autophagy.  相似文献   

10.
11.
Reaction between Os(SnI3)(κ2-S2CNMe2)(CO)(PPh3)2 and NaBH4 produces the unusual, air-stable, trihydridostannyl complex, Os(SnH3)(κ2-S2CNMe2)(CO)(PPh3)2 (1), which has been fully characterised including by X-ray crystal structure determination.Similarly, reaction between Os(SnI2Me)(κ2-S2CNMe2)(CO)(PPh3)2 or Os(SnClMe2)(κ2-S2CNMe2)(CO)(PPh3)2 and NaBH4 produces the dihydridostannyl complex, Os(SnH2Me)(κ2-S2CNMe2)(CO)(PPh3)2 (4) or the monohydridostannyl complex, Os(SnHMe2)(κ2-S2CNMe2)(CO)(PPh3)2 (6), respectively.The SnH bonds in these complexes are reactive towards acids and in selected reactions complexes 1 and 4 with aqueous HF give Os(SnF3)(κ2-S2CNMe2)(CO)(PPh3)2 (3) and Os(SnF2Me)(κ2-S2CNMe2)(CO)(PPh3)2 (5), respectively, and complex 6 with aqueous HCl gives Os(SnClMe2)(κ2-S2CNMe2)(CO)(PPh3)2.The trihydridostannyl complex 1 reacts with chloroform to form the trichlorostannyl complex, Os(SnCl3)(κ2- S2CNMe2)(CO)(PPh3)2 (2). The crystal structures of 1-3, 5, and 6 have been determined.  相似文献   

12.
The complex Hf[N(SiMe2H)2]4 was synthesized, structurally characterized, and used as a precursor with oxygen to prepare hafnium silicate thin films at substrate temperatures ?500 °C in a low-pressure CVD process. The as-deposited films were amorphous, and they remained amorphous upon annealing up to 1100 °C.  相似文献   

13.
EstU1 is a unique family VIII carboxylesterase that displays hydrolytic activity toward the amide bond of clinically used β‐lactam antibiotics as well as the ester bond of p‐nitrophenyl esters. EstU1 assumes a β‐lactamase‐like modular architecture and contains the residues Ser100, Lys103, and Tyr218, which correspond to the three catalytic residues (Ser64, Lys67, and Tyr150, respectively) of class C β‐lactamases. The structure of the EstU1/cephalothin complex demonstrates that the active site of EstU1 is not ideally tailored to perform an efficient deacylation reaction during the hydrolysis of β‐lactam antibiotics. This result explains the weak β‐lactamase activity of EstU1 compared with class C β‐lactamases. Finally, structural and sequential comparison of EstU1 with other family VIII carboxylesterases elucidates an operative molecular strategy used by family VIII carboxylesterases to extend their substrate spectrum. Proteins 2013; 81:2045–2051. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
The phytohormone gibberellin (GA) controls growth and development in plants. Previously, we identified a rice F-box protein, gibberellin-insensitive dwarf2 (GID2), which is essential for GA-mediated DELLA protein degradation. In this study, we analyzed the biological and molecular biological properties of GID2. Expression of GID2 preferentially occurred in rice organs actively synthesizing GA. Domain analysis of GID2 revealed that the C-terminal regions were essential for the GID2 function, but not the N-terminal region. Yeast two-hybrid assay and immunoprecipitation experiments demonstrated that GID2 is a component of the SCF complex through an interaction with a rice ASK1 homolog, OsSkp15. Furthermore, an in vitro pull-down assay revealed that GID2 specifically interacted with the phosphorylated Slender Rice 1 (SLR1). Taken these results together, we conclude that the phosphorylated SLR1 is caught by the SCFGID2 complex through an interacting affinity between GID2 and phosphorylated SLR1, triggering the ubiquitin-mediated degradation of SLR1.  相似文献   

15.
16.
Reaction between the carbonyl, nitrosyl complex, OsCl(CO)(NO)(PPh3)2 (1) and dioxygen results in combination of CO and O2, forming a chelating peroxycarbonyl ligand in the yellow complex, Cl(NO)(PPh3)2 (2). Confirmation of the unique peroxycarbonyl ligand arrangement in 2 is provided by crystal structure determination. When 2 is heated, as a suspension in heptane under reflux, there is a rearrangement to the regular chelating carbonate ligand in the orange complex, Cl(NO)(PPh3)2 (3). The structure of 3 has also been determined by X-ray crystallography. Compound 2 also undergoes the following reactions: with water, releasing CO2 and forming Os(OH)2Cl(NO)(PPh3)2 (4); with HCl releasing CO2 and forming Os(OH)Cl2(NO)(PPh3)2 (5); and with excess triphenylphosphine releasing CO2 and triphenylphosphine oxide forming OsCl(NO)(PPh3)3 (6).  相似文献   

17.
In chick skeletal muscle cell primary cultures, we previously demonstrated that 1alpha,25(OH)2-vitamin D3 [1alpha,25(OH)2D3], the hormonally active form of vitamin D, increases the phosphorylation and activity of the extracellular signal-regulated mitogen-activated protein (MAP) kinase isoforms ERK1 and ERK2, their subsequent translocation to the nucleus and involvement in DNA synthesis stimulation. In this study, we show that other members of the MAP kinase superfamily are also activated by the hormone. Using the muscle cell line C2C12 we found that 1alpha,25(OH)2D3 within 1 min phosphorylates and increases the activity of p38 MAPK. The immediately upstream mitogen-activated protein kinase kinases 3/6 (MKK3/MKK6) were also phosphorylated by the hormone suggesting their participation in p38 activation. 1Alpha,25(OH)2D3 was able to dephosphorylate/activate the ubiquitous cytosolic tyrosine kinase c-Src in C2C12 cells and studies with specific inhibitors imply that Src participates in hormone induced-p38 activation. Of relevance, 1alpha,25(OH)2D3 induced in the C2C12 line the stimulation of mitogen-activated protein kinase activating protein kinase 2 (MAPKAP-kinase 2) and subsequent phosphorylation of heat shock protein 27 (HSP27) in a p38 kinase activation-dependent manner. Treatment with the p38 inhibitor, SB203580, blocked p38 phosphorylation caused by the hormone and inhibited the phosphorylation of its downstrean substrates. 1Alpha,25(OH)2D3 also promotes the phosphorylation of c-jun N-terminal protein kinases (JNK 1/2), the response is fast (0.5-1 min) and maximal phosphorylation of the enzyme is observed at physiological doses of 1alpha,25(OH)2D3 (1 nM). The relative contribution of ERK-1/2, p38, and JNK-1/2 and their interrelationships in hormonal regulation of muscle cell proliferation and differentiation remain to be established.  相似文献   

18.
肌动蛋白相关蛋白2/3复合体的结构、功能与调节   总被引:3,自引:0,他引:3  
微丝参与了细胞形态维持及细胞运动等多种重要的细胞过程。微丝由肌动蛋白单体组装而成 ,肌动蛋白相关蛋白 2 / 3(Arp2 /Arp3,Arp2 / 3)复合体在微丝形成过程中起重要作用。Arp2 / 3复合体由 7个亚单位组成 ,在细胞内受到多种核化促进因子的调节 ,并与这些因子协同作用来调节肌动蛋白的核化。Arp2 / 3复合体结构、功能及调节的研究对于阐明微丝形成机制及细胞骨架与某些信号分子的关系有重要意义。  相似文献   

19.
In the present study, mice of 3 different haplotypes (H-2d, H-2k and H-2b) were sensitized subcutaneously with heat-killed H37Ra or 38-kDa antigen of Mycobacterium tuberculosis. Lymphocytes obtained from immunized animals were challenged in vitro with 38-kDa antigen in both cases. The dominant pattern of Th1-like lymphokines (IL-2 and IFN-gamma) and preferential production of 38-kDa specific IgG2a-type antibody were observed. It was noted that 38-kDa antigen was recognized permissively by all 3 strains of mice used in the present study. It was interesting to note that C3H/HeJ mice, which express BCG-resistant alleles showed a higher level of proliferative as well as cytokine response as compared to BALB/c and C57BL/6 mice, which bear BCG-susceptible alleles. These results suggest that not only in recall responses but also during the induction as well as expression phase of the immune response mediated by 38-kDa antigen of M. tuberculosis the Th1-like immune response predominates.  相似文献   

20.
Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 A. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C(alpha) atoms of 0.9 A and 1.2 A, and sequence identities of 43% and 38%, respectively). The lactadherin C2 domain has a discoidin-like fold containing two beta-sheets of five and three antiparallel beta-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One beta-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain beta-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号