首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein synthesis inhibitors such as cycloheximide (CHX) are known to suppress protein degradation including autophagy. The fact that CHX inhibits autophagy has been generally interpreted to indicate that newly synthesized protein is indispensable for autophagy. However, CHX is also known to increase the intracellular level of amino acids and activate mTORC1 activity, a master negative regulator of autophagy. Accordingly, CHX can affect autophagic activity through inhibition of de novo protein synthesis and/or modulation of mTORC1 signaling. In this study, we investigated the effects of CHX on autophagy using specific autophagy markers. We found that CHX inhibited starvation-induced autophagy but not Torin1-induced autophagy. CHX also suppressed starvation-induced puncta formation of GFP-ULK1, an early-step marker of the autophagic process which is regulated by mTORC1. CHX activated mTORC1 even under autophagy-inducible starvation conditions. Finally, the inhibitory effect of CHX on starvation-induced autophagy was cancelled by the mTOR inhibitor Torin1. These results suggest that CHX inhibits starvation-induced autophagy through mTORC1 activation and also that autophagy does not require new protein synthesis at least in the acute phase of starvation.  相似文献   

2.
ABSTRACT

Macroautophagy/autophagy can enable cancer cells to withstand cellular stress and maintain bioenergetic homeostasis by sequestering cellular components into newly formed double-membrane vesicles destined for lysosomal degradation, potentially affecting the efficacy of anti-cancer treatments. Using 13C-labeled choline and 13C-magnetic resonance spectroscopy and western blotting, we show increased de novo choline phospholipid (ChoPL) production and activation of PCYT1A (phosphate cytidylyltransferase 1, choline, alpha), the rate-limiting enzyme of phosphatidylcholine (PtdCho) synthesis, during autophagy. We also discovered that the loss of PCYT1A activity results in compromised autophagosome formation and maintenance in autophagic cells. Direct tracing of ChoPLs with fluorescence and immunogold labeling imaging revealed the incorporation of newly synthesized ChoPLs into autophagosomal membranes, endoplasmic reticulum (ER) and mitochondria during anticancer drug-induced autophagy. Significant increase in the colocalization of fluorescence signals from the newly synthesized ChoPLs and mCherry-MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) was also found on autophagosomes accumulating in cells treated with autophagy-modulating compounds. Interestingly, cells undergoing active autophagy had an altered ChoPL profile, with longer and more unsaturated fatty acid/alcohol chains detected. Our data suggest that de novo synthesis may be required to increase autophagosomal ChoPL content and alter its composition, together with replacing phospholipids consumed from other organelles during autophagosome formation and turnover. This addiction to de novo ChoPL synthesis and the critical role of PCYT1A may lead to development of agents targeting autophagy-induced drug resistance. In addition, fluorescence imaging of choline phospholipids could provide a useful way to visualize autophagosomes in cells and tissues.  相似文献   

3.
The degradation of cytoplasmic components via autophagy is crucial for intracellular homeostasis. In the process of autophagy, a newly synthesized isolation membrane (IM) is developed to sequester degradation targets and eventually the IM seals, forming an autophagosome. One of the most poorly understood autophagy‐related proteins is Atg2, which is known to localize to a contact site between the edge of the expanding IM and the exit site of the endoplasmic reticulum (ERES). Recent advances in structural and biochemical analyses have been applied to Atg2 and have revealed it to be a novel multifunctional protein that tethers membranes and transfers phospholipids between them. Considering that Atg2 is essential for the expansion of the IM that requires phospholipids as building blocks, it is suggested that Atg2 transfers phospholipids from the ERES to the IM during the process of autophagosome formation, suggesting that lipid transfer proteins can mediate de novo organelle biogenesis.  相似文献   

4.
We used pulsed stable isotope labeling of amino acids in cell culture (pSILAC) to assess protein dynamics during monocyte–macrophage differentiation. pSILAC allows metabolic labeling of newly synthesized proteins. Such de novo protein production was evaluated from 3 to 7 days in culture. Proteins were identified by liquid chromatography–tandem mass spectrometry then quantified by MaxQuant. Protein–protein linkages were then assessed by Ingenuity Pathway Analysis. Proteins identified were linked to cell homeostasis, free radical scavenging, molecular protein transport, carbohydrate metabolism, small molecule chemistry, and cell morphology. The data demonstrates specific biologic events that are linked to monocyte transformation in a defined biologic system.  相似文献   

5.
Plasmodium falciparum has a limited repertoire of autophagy-related genes (ATGs), and the functions of various proteins of the autophagy-like pathway are not fully established in this protozoan parasite. Studies suggest that some of the autophagy proteins are crucial for parasite growth. PfATG18, for example, is essential for parasite replication and has a noncanonical role in apicoplast biogenesis. In this study, we demonstrate the conserved functions of PfATG18 in food vacuole (FV) dynamics and autophagy. Intriguingly, the P. falciparum FV is found to undergo fission and fusion and PfATG18 gets enriched at the interfaces of the newly generated multilobed FV during the process. In addition, expression of PfATG18 is induced upon starvation, both at the mRNA and protein level indicating its participation in the autophagy-like pathway, which is independent of its role in apicoplast biogenesis. The study also shows that PfATG18 is transported to the FV via the haemoglobin trafficking pathway. Overall, this study establishes the conserved functions of Atg18 in this important apicomplexan.  相似文献   

6.
The ability of the nervous system to undergo long-term plasticity is based on changes in cellular and synaptic proteomes. While many studies have explored dynamic alterations in neuronal proteomes during plasticity, there has been less attention paid to the astrocytic counterpart. Indeed, progress in identifying cell type-specific proteomes is limited owing to technical difficulties. Here, we present a cell type-specific metabolic tagging technique for a mammalian coculture model based on the bioorthogonal amino acid azidonorleucine and the mutated Mus musculus methionyl-tRNA synthetaseL274G enabling azidonorleucine introduction into de novo synthesized proteins. Azidonorleucine incorporation resulted in cell type-specific protein labeling and retained neuronal or astrocytic cell viability. Furthermore, we were able to label astrocytic de novo synthesized proteins and identified both Connexin-43 and 60S ribosomal protein L10a upregulated upon treatment with Brain-derived neurotrophic factor in astrocytes of a neuron-glia coculture. Taken together, we demonstrate the successful dissociation of astrocytic from neuronal proteomes by cell type-specific metabolic labeling offering new possibilities for the analyses of cell type-specific proteome dynamics.  相似文献   

7.
ABSTRACT

During (macro)autophagy, cells form transient organelles, termed autophagosomes, to target a broad spectrum of substrates for degradation critical to cellular and organismal health. Driven by rapid membrane assembly, an initially small vesicle (phagophore) elongates into a large cup-shaped structure to engulf substrates within a few minutes in a double-membrane autophagosome. In particular, how autophagic membranes expand has been a longstanding question. Here, we summarize our recent work that delineates a pathway that drives phagophore expansion by localized de novo phospholipid synthesis. Specifically, we found that the conserved acyl-CoA synthetase Faa1 localizes to nucleated phagophores to locally activate fatty acids for de novo phospholipid synthesis in the neighboring ER. These newly synthesized phospholipids are then preferentially incorporated into autophagic membranes and drive the expansion of the phagophore into a functional autophagosome. In summary, our work uncovers molecular principles of how cells coordinate phospholipid synthesis and flux with autophagic membrane formation during autophagy.

Abbreviations: ACS: acyl-CoA synthestases; CoA: coenzyme A; ER: endoplasmic reticulum  相似文献   

8.
Metabolic reprogramming of non‐cancer cells residing in a tumor microenvironment, as a result of the adaptations to cancer‐derived metabolic and non‐metabolic factors, is an emerging aspect of cancer–host interaction. We show that in normal and cancer‐associated fibroblasts, breast cancer‐secreted extracellular vesicles suppress mTOR signaling upon amino acid stimulation to globally reduce mRNA translation. This is through delivery of cancer‐derived miR‐105 and miR‐204, which target RAGC, a component of Rag GTPases that regulate mTORC1 signaling. Following amino acid starvation and subsequent re‐feeding, 13C‐arginine labeling of de novo synthesized proteins shows selective translation of proteins that cluster to specific cellular functional pathways. The repertoire of these newly synthesized proteins is altered in fibroblasts treated with cancer‐derived extracellular vesicles, in addition to the overall suppressed protein synthesis. In human breast tumors, RAGC protein levels are inversely correlated with miR‐105 in the stroma. Our results suggest that through educating fibroblasts to reduce and re‐prioritize mRNA translation, cancer cells rewire the metabolic fluxes of amino acid pool and dynamically regulate stroma‐produced proteins during periodic nutrient fluctuations.  相似文献   

9.
Intracellular protein degradation is an essential process in all life domains. While in all eukaryotes regulated protein degradation involves ubiquitin tagging and the 26S‐proteasome, bacterial prokaryotic ubiquitin‐like protein (Pup) tagging and proteasomes are conserved only in species belonging to the phyla Actinobacteria and Nitrospira. In Mycobacterium tuberculosis, the Pup‐proteasome system (PPS) is important for virulence, yet its physiological role in non‐pathogenic species has remained an enigma. We now report, using Mycobacterium smegmatis as a model organism, that the PPS is essential for survival under starvation. Upon nitrogen limitation, PPS activity is induced, leading to accelerated tagging and degradation of many cytoplasmic proteins. We suggest a model in which the PPS functions to recycle amino acids under nitrogen starvation, thereby enabling the cell to maintain basal metabolic activities. We also find that the PPS auto‐regulates its own activity via pupylation and degradation of its components in a manner that promotes the oscillatory expression of PPS components. As such, the destructive activity of the PPS is carefully balanced to maintain cellular functions during starvation.  相似文献   

10.
11.
De novo protein design offers templates for engineering tailor‐made protein functions and orthogonal protein interaction networks for synthetic biology research. Various computational methods have been developed to introduce functional sites in known protein structures. De novo designed protein scaffolds provide further opportunities for functional protein design. Here we demonstrate the rational design of novel tumor necrosis factor alpha (TNFα) binding proteins using a home‐made grafting program AutoMatch. We grafted three key residues from a virus 2L protein to a de novo designed small protein, DS119, with consideration of backbone flexibility. The designed proteins bind to TNFα with micromolar affinities. We further optimized the interface residues with RosettaDesign and significantly improved the binding capacity of one protein Tbab1‐4. These designed proteins inhibit the activity of TNFα in cellular luciferase assays. Our work illustrates the potential application of the de novo designed protein DS119 in protein engineering, biomedical research, and protein sequence‐structure‐function studies.  相似文献   

12.
KatF is required for the expression of some 32 carbon starvation proteins in Escherichia coli including 6 previously identified as Pex. Mutants with the katF gene survive carbon and nitrogen starvation poorly. Many of the KatF-regulated starvation proteins are common to those induced by other stresses, and the mutant failed to develop starvation-mediated cross protection to osmotic, oxidative, and heat stresses. Furthermore, thermal resistance was not induced in the mutant by heat preadaptation, and it exhibited an altered pattern of protein synthesis at elevated temperature. Thus, KatF is a major switch that controls the starvation-mediated resistant state in E. coli.  相似文献   

13.
生物大分子指生物体内存在的DNA、蛋白质、多糖等物质,其对生物体正常生命活动至关重要.从头合成和设计技术在生物大分子的合成和结构设计上具有自由度高、前体简单等特点,能够按照特定研究目的对生物大分子进行全新设计和高效合成.近年来,从头合成与设计技术在人造基因组合成、新型蛋白质类药物设计、糖缀合物合成等领域已开始受到重视.基于生物大分子从头合成和设计技术,可以定向制备全新设计的DNA或全新的基因表达产物,以及具有识别功能的糖链或糖缀合物,将大大推进诸如细胞因子模拟物、基因治疗递送载体等生物活性物质的开发,为人工生物系统的构建、罕见疾病的治疗等提供新的解决方法.本文就DNA、蛋白质和多糖的从头合成和设计进行了综述,阐述了相关方法及应用,最后概括分析了三者之间的关系.  相似文献   

14.
Spatial organization of metabolic enzymes may represent a general cellular mechanism to regulate metabolic flux. One recent example of this type of cellular phenomenon is the purinosome, a newly discovered multi-enzyme metabolic assembly that includes all of the enzymes within the de novo purine biosynthetic pathway. Our understanding of the components and regulation of purinosomes has significantly grown in recent years. This paper reviews the purine de novo biosynthesis pathway and its regulation, and presents the evidence supporting the purinosome assembly and disassembly processes under the control of G-protein-coupled receptor (GPCR) signaling. This paper also discusses the implications of purinosome and GPCR regulation in drug discovery.  相似文献   

15.
Abstract A marine Vibrio sp. DW1 and two Escherichia coli strains, K165 ( htpR ) and Sc122 ( htpR +) were submitted to heat stress after different times of starvation. All three bacterial strains developed starvation-mediated cross protection against heat. While two hours ( Vibrio sp. DW1) and 24 hours ( E. coli ) of starvation gave near maximal protection, prolonged periods of non-growth offered increased protection. Chloramphenicol was added, at different times of starvation, to investigate the dependence on de novo protein synthesis for survival after heat stress during prolonged starvation. An obvious de novo protein synthesis mediated induction of protection against heat stress during starvation was not found. Starvation-induced cross protection against heat may be dependent on protein synthesis in the initial phase of starvation while after prolonged starvation the continuous protection offered is suggested not to be mediated by de novo protein synthesis at these times.  相似文献   

16.
The soluble proteins in the hemolymph, the salivary gland, and the salivary secretion of fourth instar Chironomus tentans were examined by disc electrophoresis in acrylamide gels. Of the 11 protein fractions detected in buffered saline extracts of the gland, 10 are present also in the hemolymph. Amino acid isotope incorporation experiments indicate that the protein fractions shared by the salivary gland and the hemolymph are not synthesized in the gland but are synthesized in other larval tissues. Immunochemical studies show that most of these proteins eventually are secreted from the gland. The salivary gland in vivo and in vitro is active in de novo protein synthesis. The protein synthesized tends to form large molecular weight aggregates. As demonstrated by radioautography, at least 80% of this protein is secreted from the 30 large cells forming most of the gland. The proteins synthesized in the salivary gland cannot be detected in the hemolymph. The results of this investigation are consistent with a mechanism of secretion formation involving both de novo synthesis of some secretion proteins and the selective uptake, transport, and secretion of hemal proteins by the salivary gland.  相似文献   

17.
It is not known whether the endogenous mammalian core clock proteins sustain measurable oscillations in cells in culture where de novo translation is pharmacologically inhibited. We studied here the mammalian core clock protein PER2, which undergoes robust circadian oscillations in both abundance and phosphorylation. With a newly developed antibody that enables tracing the endogenous PER2 protein oscillations over circadian cycles with cultured mouse embryonic fibroblast cells, we provide evidence that PER2 does not persist noticeable circadian rhythms when translation is inhibited.  相似文献   

18.
A major aim of proteomics is the identification of proteins in a given proteome at a given metabolic state. This protocol describes the step-by-step labeling, purification and detection of newly synthesized proteins in mammalian cells using the non-canonical amino acid azidohomoalanine (AHA). In this method, metabolic labeling of newly synthesized proteins with AHA endows them with the unique chemical functionality of the azide group. In the subsequent click chemistry tagging reaction, azide-labeled proteins are covalently coupled to an alkyne-bearing affinity tag. After avidin-based affinity purification and on-resin trypsinization, the resulting peptide mixture is subjected to tandem mass spectrometry for identification. In combination with deuterated leucine-based metabolic colabeling, candidate proteins can be immediately validated. Bioorthogonal non-canonical amino-acid tagging can be combined with any subcellular fractionation, immunopurification or other proteomic method to identify specific subproteomes, thereby reducing sample complexity and enabling the identification of subtle changes in a proteome. This protocol can be completed in 5 days.  相似文献   

19.
Upon phosphate starvation, plants retard shoot growth but promote root development presumably to enhance phosphate assimilation from the ground. Membrane lipid remodelling is a metabolic adaptation that replaces membrane phospholipids by non‐phosphorous galactolipids, thereby allowing plants to obtain scarce phosphate yet maintain the membrane structure. However, stoichiometry of this phospholipid‐to‐galactolipid conversion may not account for the massive demand of membrane lipids that enables active growth of roots under phosphate starvation, thereby suggesting the involvement of de novo phospholipid biosynthesis, which is not represented in the current model. We overexpressed an endoplasmic reticulum‐localized lysophosphatidic acid acyltransferase, LPAT2, a key enzyme that catalyses the last step of de novo phospholipid biosynthesis. Two independent LPAT2 overexpression lines showed no visible phenotype under normal conditions but showed increased root length under phosphate starvation, with no effect on phosphate starvation response including marker gene expression, root hair development and anthocyanin accumulation. Accompanying membrane glycerolipid profiling of LPAT2‐overexpressing plants revealed an increased content of major phospholipid classes and distinct responses to phosphate starvation between shoot and root. The findings propose a revised model of membrane lipid remodelling, in which de novo phospholipid biosynthesis mediated by LPAT2 contributes significantly to root development under phosphate starvation.  相似文献   

20.
《Autophagy》2013,9(5):838-839
Selective autophagy, mediated by Atg8 binding proteins, has not been extensively studied in plants. Plants possess a large gene family encoding multiple isoforms of the Atg8 protein. We have recently reported the identification of two new, closely homologous Arabidopsis thaliana plant proteins that bind the Arabidopsis Atg8f protein isoform. These two proteins are specific to plants and have no homologs in nonplant organisms. The expression levels of the genes encoding these proteins are elevated during carbon starvation and also during late stages of seed development. Exposure of young seedlings to carbon starvation induces the production of a newly identified compartment decorated by these Atg8-binding proteins. This compartment dynamically moves along the endoplasmic reticulum membrane and is also finally transported into the vacuole. Enhanced or suppressed expression of these Atg8-binding proteins respectively enhances or suppresses seed germination under suboptimal germination conditions, indicating that they contribute to seed germination vigor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号