首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ULK1 (unc51-like autophagy activating kinase 1) is a serine/threonine kinase that plays a key role in regulating macroautophagy/autophagy induction in response to amino acid starvation. Despite the recent progress in understanding ULK1 functions, the molecular mechanism by which ULK1 regulates the induction of autophagy remains elusive. In this study, we determined that ULK1 phosphorylates Ser30 of BECN1 (Beclin 1) in association with ATG14 (autophagy-related 14) but not with UVRAG (UV radiation resistance associated). The Ser30 phosphorylation was induced by deprivation of amino acids or treatments with Torin 1 or rapamycin, the conditions that inhibit MTORC1 (mechanistic target of rapamycin complex 1), and requires ATG13 and RB1CC1 (RB1 inducible coiled-coil 1), proteins that interact with ULK1. Hypoxia or glutamine deprivation, which inhibit MTORC1, was also able to increase the phosphorylation in a manner dependent upon ULK1 and ULK2. Blocking the BECN1 phosphorylation by replacing Ser30 with alanine suppressed the amino acid starvation-induced activation of the ATG14-containing PIK3C3/VPS34 (phosphatidylinositol 3-kinase catalytic subunit type 3) kinase, and reduced autophagy flux and the formation of phagophores and autophagosomes. The Ser30-to-Ala mutation did not affect the ULK1-mediated phosphorylations of BECN1 Ser15 or ATG14 Ser29, indicating that the BECN1 Ser30 phosphorylation might regulate autophagy independently of those 2 sites. Taken together, these results demonstrate that BECN1 Ser30 is a ULK1 target site whose phosphorylation activates the ATG14-containing PIK3C3 complex and stimulates autophagosome formation in response to amino acid starvation, hypoxia, and MTORC1 inhibition.  相似文献   

2.
ULK1 (unc-51 like autophagy activating kinase 1), the key mediator of MTORC1 signaling to autophagy, regulates early stages of autophagosome formation in response to starvation or MTORC1 inhibition. How ULK1 regulates the autophagy induction process remains elusive. Here, we identify that ATG13, a binding partner of ULK1, mediates interaction of ULK1 with the ATG14-containing PIK3C3/VPS34 complex, the key machinery for initiation of autophagosome formation. The interaction enables ULK1 to phosphorylate ATG14 in a manner dependent upon autophagy inducing conditions, such as nutrient starvation or MTORC1 inhibition. The ATG14 phosphorylation mimics nutrient deprivation through stimulating the kinase activity of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex and facilitates phagophore and autophagosome formation. By monitoring the ATG14 phosphorylation, we determined that the ULK1 activity requires BECN1/Beclin 1 but not the phosphatidylethanolamine (PE)-conjugation machinery and the PIK3C3 kinase activity. Monitoring the phosphorylation also allowed us to identify that ATG9A is required to suppress the ULK1 activity under nutrient-enriched conditions. Furthermore, we determined that ATG14 phosphorylation depends on ULK1 and dietary conditions in vivo. These results define a key molecular event for the starvation-induced activation of the ATG14-containing PtdIns3K complex by ULK1, and demonstrate hierarchical relations between the ULK1 activation and other autophagy proteins involved in phagophore formation.  相似文献   

3.
Xu Qian  Xinjian Li 《Autophagy》2017,13(7):1246-1247
Macroautophagy/autophagy is a cellular defense response to stress conditions and is crucial for cell homeostasis maintenance. However, the precise mechanism underlying autophagy initiation, especially in response to glutamine deprivation and hypoxia, is yet to be explored. We recently discovered that PGK1 (phosphoglycerate kinase 1), a glycolytic enzyme, functions as a protein kinase, phosphorylating BECN1/Beclin 1 to initiate autophagy. Under glutamine deprivation or hypoxia stimulation, PGK1 is acetylated at K388 by NAA10/ARD1 in an MTOR-inhibition-dependent manner, leading to the interaction between PGK1 and BECN1 and the subsequent phosphorylation of BECN1 at S30 by PGK1. This phosphorylation enhances ATG14-associated PIK3C3/VPS34-BECN1-PIK3R4/VPS15 complex activity, thereby increasing phosphatidylinositol-3-phosphate (PtdIns3P) generation in the initiation stage of autophagy. Furthermore, NAA10-dependent PGK1 acetylation and PGK1-dependent BECN1 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumor formation. Our work reveals the important dual roles of PGK1 as a glycolytic enzyme and a protein kinase in the mutual regulation of cell metabolism and autophagy in maintaining cell homeostasis.  相似文献   

4.
NRBF2/Atg38 has been identified as the fifth subunit of the macroautophagic/autophagic class III phosphatidylinositol 3-kinase (PtdIns3K) complex, along with ATG14/Barkor, BECN1/Vps30, PIK3R4/p150/Vps15 and PIK3C3/Vps34. However, its functional mechanism and regulation are not fully understood. Here, we report that NRBF2 is a fine tuning regulator of PtdIns3K controlled by phosphorylation. Human NRBF2 is phosphorylated by MTORC1 at S113 and S120. Upon nutrient starvation or MTORC1 inhibition, NRBF2 phosphorylation is diminished. Phosphorylated NRBF2 preferentially interacts with PIK3C3/PIK3R4. Suppression of NRBF2 phosphorylation by MTORC1 inhibition alters its binding preference from PIK3C3/PIK3R4 to ATG14/BECN1, leading to increased autophagic PtdIns3K complex assembly, as well as enhancement of ULK1 protein complex association. Consequently, NRBF2 in its unphosphorylated form promotes PtdIns3K lipid kinase activity and autophagy flux, whereas its phosphorylated form blocks them. This study reveals NRBF2 as a critical molecular switch of PtdIns3K and autophagy activation, and its on/off state is precisely controlled by MTORC1 through phosphorylation.  相似文献   

5.
ABSTRACT

Autophagy selectively targets invading bacteria to defend cells, whereas bacterial pathogens counteract autophagy to survive in cells. The initiation of canonical autophagy involves the PIK3C3 complex, but autophagy targeting Group A Streptococcus (GAS) is PIK3C3-independent. We report that GAS infection elicits both PIK3C3-dependent and -independent autophagy, and that the GAS effector NAD-glycohydrolase (Nga) selectively modulates PIK3C3-dependent autophagy. GAS regulates starvation-induced (canonical) PIK3C3-dependent autophagy by secreting streptolysin O and Nga, and Nga also suppresses PIK3C3-dependent GAS-targeting-autophagosome formation during early infection and facilitates intracellular proliferation. This Nga-sensitive autophagosome formation involves the ATG14-containing PIK3C3 complex and RAB1 GTPase, which are both dispensable for Nga-insensitive RAB9A/RAB17-positive autophagosome formation. Furthermore, although MTOR inhibition and subsequent activation of ULK1, BECN1, and ATG14 occur during GAS infection, ATG14 recruitment to GAS is impaired, suggesting that Nga inhibits the recruitment of ATG14-containing PIK3C3 complexes to autophagosome-formation sites. Our findings reveal not only a previously unrecognized GAS-host interaction that modulates canonical autophagy, but also the existence of multiple autophagy pathways, using distinct regulators, targeting bacterial infection.

Abbreviations: ATG5: autophagy related 5; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; CALCOCO2: calcium binding and coiled-coil domain 2; GAS: group A streptococcus; GcAV: GAS-containing autophagosome-like vacuole; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; Nga: NAD-glycohydrolase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RAB: RAB, member RAS oncogene GTPases; RAB1A: RAB1A, member RAS oncogene family; RAB11A: RAB11A, member RAS oncogene family; RAB17: RAB17, member RAS oncogene family; RAB24: RAB24, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; SLO: streptolysin O; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2  相似文献   

6.
Accumulating evidence suggests that mitogen-activated protein kinases (MAPKs) regulate macroautophagy/autophagy. However, the involvement of dual-specificity protein phosphatases (DUSPs), endogenous inhibitors for MAPKs, in autophagy remains to be determined. Here we report that DUSP1/MKP-1, the founding member of the DUSP family, plays a critical role in regulating autophagy. Specifically, we demonstrate that DUSP1 knockdown by shRNA in human ovarian cancer CAOV3 cells and knockout in murine embryonic fibroblasts, increases both basal and rapamycin-increased autophagic flux. Overexpression of DUSP1 had the opposite effect. Importantly, knockout of Dusp1 promoted phosphorylation of ULK1 at Ser555, and BECN1/Beclin 1 at Ser15, and the association of PIK3C3/VPS34, ATG14, BECN1 and MAPK, leading to the activation of the autophagosome-initiating class III phosphatidylinositol 3-kinase (PtdIns3K) complex. Furthermore, knockdown and pharmacological inhibitor studies indicated that DUSP1-mediated suppression of autophagy reflected inactivation of the MAPK1-MAPK3 members of the MAPK family. Knockdown of DUSP1 sensitized CAOV3 cells to rapamycin-induced antigrowth activity. Moreover, CAOV3-CR cells, a line that had acquired cisplatin resistance, exhibited an elevated DUSP1 level and were refractory to rapamycin-induced autophagy and cytostatic effects. Knockdown of DUSP1 in CAOV3-CR cells restored sensitivity to rapamycin. Collectively, this work identifies a previously unrecognized role for DUSP1 in regulating autophagy and suggests that suppression of DUSP1 may enhance the therapeutic activity of rapamycin.  相似文献   

7.
Daqian Xu  Zheng Wang 《Autophagy》2016,12(6):1047-1048
As a central node of the macroautophagy/autophagy process, the BECN1/Beclin1-PIK3C3/VPS34 complex participates in different steps of autophagy by interacting with multiple molecules. The ATG14-associated PIK3C3 complex is involved in autophagy initiation, whereas the UVRAG-associated complex mainly modulates autophagosome maturation and endosome fusion. However, the molecular mechanism that coordinates the sequential execution of the autophagy program remains unknown. We have recently discovered that a Golgi-resident protein, PAQR3, regulates autophagy initiation as it preferentially facilitates the formation of the ATG14-linked PIK3C3 complex instead of the UVRAG-associated complex. Upon glucose starvation, AMPK directly phosphorylates T32 of PAQR3, which is crucial for the activation of the ATG14-associated class III PtdIns3K. Furthermore, Paqr3-deleted mice have a deficiency in exercise-induced autophagy as well as behavioral disorders. Thus, this work not only uncovers the regulatory mechanism of PAQR3 on autophagy initiation, but also provides a potential candidate therapeutic target for neurodegenerative diseases.  相似文献   

8.
Autophagy is a cellular defense response to stress conditions, such as nutrient starvation. The type III phosphatidylinositol (PtdIns) 3-kinase, whose catalytic subunit is PIK3C3/VPS34, plays a critical role in intracellular membrane trafficking and autophagy induction. PIK3C3 forms multiple complexes and the ATG14-containing PIK3C3 is specifically involved in autophagy induction. Mechanistic target of rapamycin (MTOR) complex 1, MTORC1, is a key cellular nutrient sensor and integrator to stimulate anabolism and inhibit catabolism. Inactivation of TORC1 by nutrient starvation plays a critical role in autophagy induction. In this report we demonstrated that MTORC1 inactivation is critical for the activation of the autophagy-specific (ATG14-containing) PIK3C3 kinase, whereas it has no effect on ATG14-free PIK3C3 complexes. MTORC1 inhibits the PtdIns 3-kinase activity of ATG14-containing PIK3C3 by phosphorylating ATG14, which is required for PIK3C3 inhibition by MTORC1 both in vitro and in vivo. Our data suggest a mechanistic link between amino acid starvation and autophagy induction via the direct activation of the autophagy-specific PIK3C3 kinase.  相似文献   

9.
BECN1/Beclin 1 is regarded as a critical component in the class III phosphatidylinositol 3-kinase (PtdIns3K) complex to trigger autophagy in mammalian cells. Despite its significant role in a number of cellular and physiological processes, the exact function of BECN1 in autophagy remains controversial. Here we created a BECN1 knockout human cell line using the TALEN technique. Surprisingly, the complete loss of BECN1 had little effect on LC3 (MAP1LC3B/LC3B) lipidation, and LC3B puncta resembling autophagosomes by fluorescence microscopy were still evident albeit significantly smaller than those in the wild-type cells. Electron microscopy (EM) analysis revealed that BECN1 deficiency led to malformed autophagosome-like structures containing multiple layers of membranes under amino acid starvation. We further confirmed that the PtdIns3K complex activity and autophagy flux were disrupted in BECN1−/− cells. Our results demonstrate the essential role of BECN1 in the functional formation of autophagosomes, but not in LC3B lipidation.  相似文献   

10.
I. Pavlinov  M. Salkovski 《Autophagy》2020,16(8):1547-1549
ABSTRACT

The PIK3C3/VPS34-containing phosphatidylinositol 3-kinase (PtdIns3K) initiation complex (complex I) is necessary for macroautophagy/autophagy initiation and is comprised of PIK3R4/VPS15-PIK3C3/VPS34-BECN1-ATG14, while the endosomal trafficking complex (complex II) is necessary for vesicle trafficking and is comprised of PIK3R4/VPS15-PIK3C3/VPS34-BECN1-UVRAG. This composition difference was exploited to identify novel and specific autophagy inhibitors that disrupted the BECN1-ATG14 protein-protein interaction, without affecting vesicle trafficking. A cellular NanoBRET assay was implemented to identify these inhibitors, and one compound was able to successfully disrupt the BECN1-ATG14 interaction and inhibit autophagy, with limited impact on vesicle trafficking. These results reveal the first protein-protein interaction inhibitor targeting the autophagy initiation machinery and demonstrate the viability of targeting protein-protein interactions for the discovery of autophagy-specific modulators.  相似文献   

11.
Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing.  相似文献   

12.
Autophagy is an intracellular degradation pathway that functions in protein and organelle turnover in response to starvation and cellular stress. Autophagy is initiated by the formation of a complex containing Beclin 1 (BECN1) and its binding partner Phosphoinositide-3-kinase, class 3 (PIK3C3). Recently, BECN1 deficiency was shown to enhance the pathology of a mouse model of Alzheimer Disease (AD). However, the mechanism by which BECN1 or autophagy mediate these effects are unknown. Here, we report that the levels of Amyloid precursor protein (APP) and its metabolites can be reduced through autophagy activation, indicating that they are a substrate for autophagy. Furthermore, we find that knockdown of Becn1 in cell culture increases the levels of APP and its metabolites. Accumulation of APP and APP C-terminal fragments (APP-CTF) are accompanied by impaired autophagosomal clearance. Pharmacological inhibition of autophagosomal-lysosomal degradation causes a comparable accumulation of APP and APP-metabolites in autophagosomes. Becn1 reduction in cell culture leads to lower levels of its binding partner Pik3c3 and increased presence of Microtubule-associated protein 1, light chain 3 (LC3). Overexpression of Becn1, on the other hand, reduces cellular APP levels. In line with these observations, we detected less BECN1 and PIK3C3 but more LC3 protein in brains of AD patients. We conclude that BECN1 regulates APP processing and turnover. BECN1 is involved in autophagy initiation and autophagosome clearance. Accordingly, BECN1 deficiency disrupts cellular autophagy and autophagosomal-lysosomal degradation and alters APP metabolism. Together, our findings suggest that autophagy and the BECN1-PIK3C3 complex regulate APP processing and play an important role in AD pathology.  相似文献   

13.
《Autophagy》2013,9(1):183-184
Progesterone is a steroid hormone that is necessary to maintain pregnancy in mammals. We recently found that mice with a conditional deletion of Becn1/Beclin 1 specifically in the progesterone-synthesizing cells of the corpus luteum, had reduced progesterone synthesis and these mice failed to maintain pregnancy.1 Furthermore, we identified that lipid storage and feedback through PRLR (prolactin receptor) and LHCGR (luteinizing hormone/choriogonadotropin receptor) were negatively affected by Becn1 deletion. BECN1 is necessary for the interaction of the 2 catalytic subunits of the class III phosphatidylinositol 3-kinase complex, PIK3C3, and PIK3R4, which are responsible for the generation of phosphatidylinositol 3-phosphate that is required for nucleation of the phagophore. Work from Sun et al. and Itakura et al. demonstrated that this BECN1 complex is also necessary for the fusion of autophagosomes and endosomes with lysosomes. Therefore, we suspected that ablating Becn1 in luteal cells would inhibit macroautophagy, hereafter referred to as autophagy. In support, we provide evidence that autophagic flux is reduced in our model. Thus, this study provides evidence that Becn1 is necessary for steroid production in murine luteal cells.  相似文献   

14.
Progesterone is a steroid hormone that is necessary to maintain pregnancy in mammals. We recently found that mice with a conditional deletion of Becn1/Beclin 1 specifically in the progesterone-synthesizing cells of the corpus luteum, had reduced progesterone synthesis and these mice failed to maintain pregnancy.1 Furthermore, we identified that lipid storage and feedback through PRLR (prolactin receptor) and LHCGR (luteinizing hormone/choriogonadotropin receptor) were negatively affected by Becn1 deletion. BECN1 is necessary for the interaction of the 2 catalytic subunits of the class III phosphatidylinositol 3-kinase complex, PIK3C3, and PIK3R4, which are responsible for the generation of phosphatidylinositol 3-phosphate that is required for nucleation of the phagophore. Work from Sun et al. and Itakura et al. demonstrated that this BECN1 complex is also necessary for the fusion of autophagosomes and endosomes with lysosomes. Therefore, we suspected that ablating Becn1 in luteal cells would inhibit macroautophagy, hereafter referred to as autophagy. In support, we provide evidence that autophagic flux is reduced in our model. Thus, this study provides evidence that Becn1 is necessary for steroid production in murine luteal cells.  相似文献   

15.
The class III phosphatidylinositol (PtdIns)-3 kinase, PIK3C3/VPS34, forms multiple complexes and regulates a variety of cellular functions, especially in intracellular vesicle trafficking and autophagy. Even though PtdIns3P, the product of PIK3C3, is thought to be a critical membrane marker for the autophagosome, it is unclear how PIK3C3 is regulated in response to autophagy-inducing stimuli. A complexity of PIK3C3 biology is due in part to the existence of multiple complexes, of which the ATG14- or UVRAG-containing complexes play important roles in autophagy. We recently discovered differential regulation of distinct PIK3C3 complexes in response to energy starvation and showed a mechanism by which AMPK directly phosphorylates PIK3C3 and BECN1 to regulate non- and pro-autophagic PIK3C3 complexes, respectively.  相似文献   

16.
《Autophagy》2013,9(6):1071-1092
DIRAS3 is an imprinted tumor suppressor gene that is downregulated in 60% of human ovarian cancers. Re-expression of DIRAS3 at physiological levels inhibits proliferation, decreases motility, induces autophagy, and regulates tumor dormancy. Functional inhibition of autophagy with choroquine in dormant xenografts that express DIRAS3 significantly delays tumor regrowth after DIRAS3 levels are reduced, suggesting that autophagy sustains dormant ovarian cancer cells. This study documents a newly discovered role for DIRAS3 in forming the autophagosome initiation complex (AIC) that contains BECN1, PIK3C3, PIK3R4, ATG14, and DIRAS3. Participation of BECN1 in the AIC is inhibited by binding of BECN1 homodimers to BCL2. DIRAS3 binds BECN1, disrupting BECN1 homodimers and displacing BCL2. Binding of DIRAS3 to BECN1 increases the association of BECN1 with PIK3C3 and ATG14, facilitating AIC activation. Amino acid starvation of cells induces DIRAS3 expression, reduces BECN1-BCL2 interaction and promotes autophagy, whereas DIRAS3 depletion blocks amino acid starvation-induced autophagy. In primary ovarian cancers, punctate expression of DIRAS3, BECN1, and the autophagic biomarker MAP1LC3 are highly correlated (P < 0.0001), underlining the clinical relevance of these mechanistic studies. Punctate expression of DIRAS3 and MAP1LC3 was detected in only 21–23% of primary ovarian cancers but in 81–84% of tumor nodules found on the peritoneal surface at second-look operations following primary chemotherapy. This reflects a 4-fold increase (P < 0.0001) in autophagy between primary disease and post-treatment recurrence. We suggest that DIRAS3 not only regulates the AIC, but induces autophagy in dormant, nutrient-deprived ovarian cancer cells that remain after conventional chemotherapy, facilitating their survival.  相似文献   

17.
The tumor suppressor activity of Beclin 1 (BECN1), a subunit of class III phosphatidylinositol 3-kinase complex, has been attributed to its regulation of apoptosis and autophagy. Here, we identify FYVE-CENT (ZFYVE26), a phosphatidylinositol 3-phosphate binding protein important for cytokinesis, as a novel interacting protein of Beclin 1. A mutation in FYVE-CENT (R1945Q) associated with breast cancer abolished the interaction between FYVE-CENT and Beclin 1, and reduced the localization of these proteins at the intercellular bridge during cytokinesis. Breast cancer cells containing the FYVE-CENT R1945Q mutation displayed a significant increase in cytokinetic profiles and bi-multinuclear phenotype. Both Beclin 1 and FYVE-CENT were found to be downregulated in advanced breast cancers. These findings suggest a positive feedback loop for recruitment of FYVE-CENT and Beclin 1 to the intercellular bridge during cytokinesis, and reveal a novel potential tumor suppressor mechanism for Beclin 1.  相似文献   

18.
《Autophagy》2013,9(2):165-176
Macroautophagy (autophagy) is the major intracellular degradation pathway for long-lived proteins and organelles. It helps the cell to survive a spectrum of stressful conditions including starvation, growth factor deprivation and misfolded protein accumulation. Moreover, abnormalities of autophagy play a role in major health problems including cancer and neurodegenerative diseases. Yet, mechanisms controlling autophagic activity are not fully understood. Here, we describe hsa-miR-376b (miR-376b) as a new microRNA (miRNA) regulating autophagy. We showed that miR-376b expression attenuated starvation- and rapamycin-induced autophagy in MCF-7 and Huh-7 cells. We discovered autophagy proteins ATG4C and BECN1 (Beclin 1) as cellular targets of miR-376b. Indeed, upon miRNA overexpression, both mRNA and protein levels of ATG4C and BECN1 were decreased. miR-376b target sequences were present in the 3′ UTR of ATG4C and BECN1 mRNAs and introduction of mutations abolished their miR-376b responsiveness. Antagomir-mediated inactivation of the endogenous miR-376b led to an increase in ATG4C and BECN1 levels. Therefore, miR-376b controls autophagy by directly regulating intracellular levels of two key autophagy proteins, ATG4C and BECN1.  相似文献   

19.
Macroautophagy (autophagy) is the major intracellular degradation pathway for long-lived proteins and organelles. It helps the cell to survive a spectrum of stressful conditions including starvation, growth factor deprivation and misfolded protein accumulation. Moreover, abnormalities of autophagy play a role in major health problems including cancer and neurodegenerative diseases. Yet, mechanisms controlling autophagic activity are not fully understood. Here, we describe hsa-miR-376b (miR-376b) as a new microRNA (miRNA) regulating autophagy. We showed that miR-376b expression attenuated starvation- and rapamycin-induced autophagy in MCF-7 and Huh-7 cells. We discovered autophagy proteins ATG4C and BECN1 (Beclin 1) as cellular targets of miR-376b. Indeed, upon miRNA overexpression, both mRNA and protein levels of ATG4C and BECN1 were decreased. miR-376b target sequences were present in the 3' UTR of ATG4C and BECN1 mRNAs and introduction of mutations abolished their miR-376b responsiveness. Antagomir-mediated inactivation of the endogenous miR-376b led to an increase in ATG4C and BECN1 levels. Therefore, miR-376b controls autophagy by directly regulating intracellular levels of two key autophagy proteins, ATG4C and BECN1.  相似文献   

20.
Reactive oxygen species (ROS) have been commonly accepted as inducers of autophagy, and autophagy in turn is activated to relieve oxidative stress. Yet, whether and how oxidative stress, generated in various human pathologies, regulates autophagy remains unknown. Here, we mechanistically studied the role of TRPM2 (transient receptor potential cation channel subfamily M member 2)-mediated Ca2+ influx in oxidative stress-mediated autophagy regulation. On the one hand, we demonstrated that oxidative stress triggered TRPM2-dependent Ca2+ influx to inhibit the induction of early autophagy, which renders cells more susceptible to death. On the other hand, oxidative stress induced autophagy (and not cell death) in the absence of the TRPM2-mediated Ca2+ influx. Moreover, in response to oxidative stress, TRPM2-mediated Ca2+ influx activated CAMK2 (calcium/calmodulin dependent protein kinase II) at levels of both phosphorylation and oxidation, and the activated CAMK2 subsequently phosphorylated BECN1/Beclin 1 on Ser295. Ser295 phosphorylation of BECN1 in turn decreased the association between BECN1 and PIK3C3/VPS34, but induced binding between BECN1 and BCL2. Clinically, acetaminophen (APAP) overdose is the most common cause of acute liver failure worldwide. We demonstrated that APAP overdose also activated ROS-TRPM2-CAMK2-BECN1 signaling to suppress autophagy, thereby causing primary hepatocytes to be more vulnerable to death. Inhibiting the TRPM2-Ca2+-CAMK2 cascade significantly mitigated APAP-induced liver injury. In summary, our data clearly demonstrate that oxidative stress activates the TRPM2-Ca2+-CAMK2 cascade to phosphorylate BECN1 resulting in autophagy inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号