首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although autophagy is a highly conserved mechanism among species and cell types, few are the molecules involved with the autophagic process that display cell- or tissue- specific expression. We have unraveled the positive regulatory role on autophagy of RUFY4 (RUN and FYVE domain containing 4), which is expressed in subsets of immune cells, including dendritic cells (DCs). DCs orchestrate the eradication of pathogens by coordinating the action of the different cell types involved in microbe recognition and destruction during the immune response. To fulfill this function, DC display particular regulation of their endocytic and autophagy pathways in response to the immune environment. Autophagy flux is downmodulated in DCs upon microbe sensing, but is remarkably augmented, when cells are differentiated in the presence of the pleiotropic cytokine IL4 (interleukin 4). From gene expression studies aimed at comparing the impact of IL4 on DC differentiation, we identified RUFY4, as a novel regulator that augments autophagy flux and, when overexpressed, induces drastic membrane redistribution and strongly tethers lysosomes. RUFY4 is therefore one of the few known positive regulators of autophagy that is expressed in a cell-specific manner or under specific immunological conditions associated with IL4 expression such as allergic asthma.  相似文献   

2.
  总被引:1,自引:0,他引:1  
Autophagy is a newly recognized innate defense mechanism, acting as a cell-autonomous system for elimination of intracellular pathogens. The signals and signalling pathways inducing autophagy in response to pathogen invasion are presently not known. Here we show that autophagy is controlled by recognizing conserved pathogen-associated molecular patterns (PAMPs). We screened a PAMP library for effects on autophagy in RAW 264.7 macrophages and found that several prototype Toll-like receptor (TLR) ligands induced autophagy. Single-stranded RNA and TLR7 generated the most potent effects. Induction of autophagy via TLR7 depended on MyD88 expression. Stimulation of autophagy with TLR7 ligands was functional in eliminating intracellular microbes, even when the target pathogen was normally not associated with TLR7 signalling. These findings link two innate immunity defense systems, TLR signalling and autophagy, provide a potential molecular mechanism for induction of autophagy in response to pathogen invasion, and show that the newly recognized ability of TLR ligands to stimulate autophagy can be used to treat intracellular pathogens.  相似文献   

3.
Jiefei Geng 《Autophagy》2017,13(4):639-641
Macroautophagy/autophagy remains a rapidly advancing research topic, and there continues to be a need for constantly evolving methodology to investigate this pathway at each individual step. Accordingly, new assays to measure autophagic flux in a robust and reliable manner are essential to understand the mechanism and physiological roles of autophagy. Kaizuka et al. recently reported a new fluorescence probe, GFP-LC3-RFP-LC3ΔG to directly demonstrate autophagic flux without being combined with lysosomal inhibitors (see the Kaizuka et al. punctum in this issue of the journal). When expressed in cells, the probe is cleaved into a degradable/quenchable part, GFP-LC3, and stable/cytosolic part, RFP-LC3ΔG. The latter serves as an internal control and a decrease of the GFP:RFP ratio indicates the occurrence of autophagy. Since the key index of this probe is the degradation of GFP-LC3, it can be used to measure the cumulative effect of basal autophagy. The assay is applicable to high-throughput drug discovery as well as in vivo analysis.  相似文献   

4.
A current need in the neuroscience field is a simple method to monitor autophagic activity in vivo in neurons. Until very recently, most reports have been based on correlative and static determinations of the expression levels of autophagy markers in the brain, generating conflicting interpretations. Autophagy is a fundamental process mediating the degradation of diverse cellular components, including organelles and protein aggregates at basal levels, whereas alterations in the process (i.e., autophagy impairment) operate as a pathological mechanism driving neurodegeneration in most prevalent diseases. We have recently described a new simple method to deliver and express an autophagy flux reporter through the peripheral and central nervous system of mice by the intracerebroventricular delivery of adeno-associated viruses (AAV) into newborn mice. We obtained a wide expression of a monomeric tandem mCherry-GFP-LC3 construct in neurons through the nervous system and demonstrated efficient and accurate measurements of LC3 flux after pharmacological stimulation of the pathway or in disease settings of axonal damage. Here we discuss the possible applications of this new method to assess autophagy activity in neurons in vivo.  相似文献   

5.
《Autophagy》2013,9(8):1227-1244
Autophagy involves the isolation and targeting of unwanted cellular components to lysosomes for their digestion and reuse. Autophagic dysregulation has recently been implicated in a wide range of disease processes, yet facile methods for quantifying autophagy have been lacking in the field. Here we describe the generation of a quantitative plate reader assay for measuring the autophagic activity of cells. One of the best characterized autophagy markers is the protein LC3B, which normally resides in the cytosol (LC3B-I) but upon induction of autophagy becomes lipidated and embedded in autophagosomal membranes (LC3B-II). To quantify autophagy, we reasoned that GFP-tagged LC3B could serve as a time-resolved fluorescence resonance energy transfer (TR-FRET) acceptor upon cell lysis in the presence of terbium-labeled LC3B antibodies. Using this TR-FRET immunoassay approach, we screened a panel of LC3B antibodies and identified an antibody that exhibits strong preferential affinity toward autophagosome-associated LC3B-II and thereby facilitates specific detection of autophagic activity. The plate reader format provides both a quantitative and an objective result, thus overcoming some of the key limitations of the traditional immunoblotting and imaging approaches used to monitor autophagy. Moreover, since the assay step requires only a single addition of cell lysis buffer containing the detection antibody its simple workflow is both automation-friendly and scalable, which renders it suitable for high-throughput screening. We demonstrate how this TR-FRET immunoassay for GFP-tagged LC3B-II can be applied to quantitatively detect changes in the autophagy activity of cells, including estimating effects on autophagic flux.  相似文献   

6.
《Autophagy》2013,9(4):710-714
A current need in the neuroscience field is a simple method to monitor autophagic activity in vivo in neurons. Until very recently, most reports have been based on correlative and static determinations of the expression levels of autophagy markers in the brain, generating conflicting interpretations. Autophagy is a fundamental process mediating the degradation of diverse cellular components, including organelles and protein aggregates at basal levels, whereas alterations in the process (i.e., autophagy impairment) operate as a pathological mechanism driving neurodegeneration in most prevalent diseases. We have recently described a new simple method to deliver and express an autophagy flux reporter through the peripheral and central nervous system of mice by the intracerebroventricular delivery of adeno-associated viruses (AAV) into newborn mice. We obtained a wide expression of a monomeric tandem mCherry-GFP-LC3 construct in neurons through the nervous system and demonstrated efficient and accurate measurements of LC3 flux after pharmacological stimulation of the pathway or in disease settings of axonal damage. Here we discuss the possible applications of this new method to assess autophagy activity in neurons in vivo.  相似文献   

7.
《Autophagy》2013,9(12):2389-2391
Autophagy provides an important defense mechanism against intracellular bacteria, such as Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis disease (TB). We recently reported that pathogen recognition and antibacterial autophagy are connected by the induction of the DNA damage-regulated autophagy modulator DRAM1 via the toll-like receptor (TLR)-MYD88-NFKB innate immunity signaling pathway. Having shown that DRAM1 colocalizes with Mtb in human macrophages, we took advantage of a zebrafish model for TB to investigate the function of DRAM1 in autophagic host defense in vivo. We found that DRAM1 protects the zebrafish host from infection with Mycobacterium marinum (Mm), a close relative of Mtb. Overexpression of DRAM1 increases autophagosome formation and promotes autophagic flux by a mechanism dependent on the cytosolic DNA sensor TMEM173/STING and the ubiquitin receptor SQSTM1/p62. Here we summarize and discuss the implications of these findings.  相似文献   

8.
Macroautophagy is a catabolic process that delivers cytoplasmic components via the autophagosome to lysosomes for degradation. Measuring autophagic activity is critical to dissect molecular mechanisms and functions of autophagy but remains challenging due to the lack of a definitive method. We have recently developed a new fluorescent probe, GFP-LC3-RFP-LC3ΔG, to assess autophagic flux. Upon intracellular expression, the probe is cleaved by ATG4 family proteases into equimolar amounts of GFP-LC3 and RFP-LC3ΔG. The former is degraded by autophagy while the latter persists as an internal control in the cytosol. Autophagic flux can thus be quantified by obtaining the ratio of GFP:RFP signals. Using this method, we have identified several autophagy-modulating drugs by screening an approved drug library. We have also demonstrated that induced and basal autophagic flux can be monitored in zebrafish and mice.  相似文献   

9.
Macroautophagy is a conserved degradative pathway in which a double-membrane compartment sequesters cytoplasmic cargo and delivers the contents to lysosomes for degradation. Efficient formation and maturation of autophagic vesicles, so-called phagophores that are precursors to autophagosomes, and their subsequent trafficking to lysosomes relies on the activity of small RAB GTPases, which are essential factors of cellular vesicle transport systems. The activity of RAB GTPases is coordinated by upstream factors, which include guanine nucleotide exchange factors (RAB GEFs) and RAB GTPase activating proteins (RAB GAPs). A role in macroautophagy regulation for different TRE2-BUB2-CDC16 (TBC) domain-containing RAB GAPs has been established. Recently, however, a positive modulation of macroautophagy has also been demonstrated for the TBC domain-free RAB3GAP1/2, adding to the family of RAB GAPs that coordinate macroautophagy and additional cellular trafficking pathways.  相似文献   

10.
Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by 5 mutations in the RAB7A gene, a ubiquitously expressed GTPase controlling late endocytic trafficking. In neurons, RAB7A also controls neuronal-specific processes such as NTF (neurotrophin) trafficking and signaling, neurite outgrowth and neuronal migration. Given the involvement of macroautophagy/autophagy in several neurodegenerative diseases and considering that RAB7A is fundamental for autophagosome maturation, we investigated whether CMT2B-causing mutants affect the ability of this gene to regulate autophagy. In HeLa cells, we observed a reduced localization of all CMT2B-causing RAB7A mutants on autophagic compartments. Furthermore, compared to expression of RAB7AWT, expression of these mutants caused a reduced autophagic flux, similar to what happens in cells expressing the dominant negative RAB7AT22N mutant. Consistently, both basal and starvation-induced autophagy were strongly inhibited in skin fibroblasts from a CMT2B patient carrying the RAB7AV162M mutation, suggesting that alteration of the autophagic flux could be responsible for neurodegeneration.  相似文献   

11.
12.
    
Dysfunctional macroautophagy/autophagy has been causatively linked to aging and the pathogenesis of many diseases, which are also broadly characterized by dysregulated cellular redox. As the autophagy-related (ATG) conjugation systems that mediate autophagosome maturation are cysteine dependent, their oxidation may account for loss in this catabolic process under conditions of oxidative stress. During active autophagy, LC3 is transferred from the catalytic thiol of ATG7 to the active site thiol of ATG3, where it is conjugated to phosphatidylethanolamine. In our recent study, we show LC3 is bound to the catalytic thiols of inactive ATG3 and ATG7 through a stable thioester, which becomes transient upon autophagy stimulation. Transient interaction with LC3 exposes the catalytic thiols on ATG3 and ATG7, which under pro-oxidizing conditions undergo inhibitory oxidation. This process was found to be upregulated in aged mouse tissue and therefore may account, at least in part, for impaired autophagy observed during aging.  相似文献   

13.
目的探究维生素D在鼠肺细胞感染烟曲霉后对细胞自噬的影响。方法用一定量的烟曲霉活化孢子感染细胞后,一组细胞加入维生素D(维生素D组),一组细胞加入生理盐水,感染一定时间后用溶酶体探针检测自噬相关分子的表达;收集各组细胞并裂解细胞,离心取上清,用Western-blot法检测上清液中的LC3BII、Dectin-1及ROS的表达水平。结果活化的孢子感染肺巨噬细胞后,维生素D组自噬体与溶酶体共定位减少、吞噬孢子的速率在减少以及ROS水平降低,其对应的胞内Dectin-1、ROS、LC3BII减少且差异有统计学意义。结论烟曲霉感染肺巨噬细胞后,维生素D可通过减弱细胞自噬体与溶酶体的融合并下调自噬信号通路蛋白的表达以达到抵抗烟曲霉感染的作用。  相似文献   

14.
    
Aut7/Apg8 is located in the intermediate structures of the autophagosome and plays an essential role in autophagosome formation. The processed form, cleaved at a C‐terminus of Gly120 and called LC3‐I, was expressed, purified and crystallized in two crystal forms. One form belongs to space group I41, with unit‐cell parameters a = 84.39, c = 36.89 Å. The other form belongs to space group P41 or P43, with unit‐cell parameters a = 60.48, c = 35.28 Å. From the latter form, a complete diffraction data set was collected to 2.1 Å resolution.  相似文献   

15.
    
The co‐catabolism of multiple host‐derived carbon substrates is required by Mycobacterium tuberculosis (Mtb) to successfully sustain a tuberculosis infection. However, the metabolic plasticity of this pathogen and the complexity of the metabolic networks present a major obstacle in identifying those nodes most amenable to therapeutic interventions. It is therefore critical that we define the metabolic phenotypes of Mtb in different conditions. We applied metabolic flux analysis using stable isotopes and lipid fingerprinting to investigate the metabolic network of Mtb growing slowly in our steady‐state chemostat system. We demonstrate that Mtb efficiently co‐metabolises either cholesterol or glycerol, in combination with two‐carbon generating substrates without any compartmentalisation of metabolism. We discovered that partitioning of flux between the TCA cycle and the glyoxylate shunt combined with a reversible methyl citrate cycle is the critical metabolic nodes which underlie the nutritional flexibility of Mtb. These findings provide novel insights into the metabolic architecture that affords adaptability of bacteria to divergent carbon substrates and expand our fundamental knowledge about the methyl citrate cycle and the glyoxylate shunt.  相似文献   

16.
杨瑞丽  孙佳楠  陆伟 《生命科学》2013,(11):1084-1088
结核分枝杆菌(Mycobacterium tuberculosis,Mtb)感染后能抑制宿主巨噬细胞(M西)的免疫反应,并在其中生存、复制。研究表明Mtb减毒株感染主要诱导宿主Mφ凋亡,凋亡能抑制胞内Mtb的活力;而Mtb毒力株感染能抑制凋亡的完成,诱导Mφ坏死,最终导致Mtb扩散、感染临近细胞。通过对Mtb感染诱导宿主Mφ不同死亡方式的讨论,进一步认识Mtb的致病机制。  相似文献   

17.
目的:检测LC3在肺泡Ⅱ型上皮细胞A549上的表达情况,及结核分枝杆菌刺激后对其表达的影响,探讨自噬在结核分枝杆菌感染上皮细胞中所起的作用。方法:体外培养肺泡Ⅱ型上皮细胞A549,在结核分枝杆菌感染A549细胞0h,24h分别提取RNA,采用RT-PCR的方法检测LC3mRNA的表达情况。采用凋亡坏死染色试剂盒在结核分枝杆菌感染24h后检测对照组,3-MA组,MTB组和3-MA+MTB组的细胞坏死情况。在结核分枝杆菌感染A549细胞4h,8h,16,24h采用Non-Radioactive Cytocity Assay的方法检测对照组,3-MA组,MTB组和3-MA+MTB组上清液LDH的OD值。结果:LC3在肺泡Ⅱ型上皮细胞显著表达,结核分枝杆菌感染后LC3表达降低。细胞凋亡和坏死染色结果显示空白组和3-MA组没有明显差异(P>0.05),MTB组和3-MA+MTB组有明显差异(P<0.05)。LDH检测显示MTB组和3-MA+MTB组上清液LDH的OD值数据两两之间有明显差异(P<0.05)并且有时间依赖性。结论:肺泡II型上皮细胞自噬体在抵抗结核分枝杆菌的感染过程中起一定的作用。  相似文献   

18.
M. tuberculosis causes an enormous worldwide burden of disease. Its success depends upon subverting the antimicrobial capacity of macrophages. We have known for decades that M. tuberculosis impairs phagosomal trafficking to avoid lysosomal degradation, but the mechanism is unclear. Recent work has described a phagolysosomal pathway called LC3-associated phagocytosis (LAP), in which LC3 associates with microbe-containing phagosomes. Macrophage pathogen recognition receptors (PRRs) initiate LAP, and NADPH oxidase and RUBCN/RUBICON are required for LAP. We discovered that CpsA, an exported M. tuberculosis virulence factor, blocks LAP by interfering with recruitment of CYBB/NOX2 (cytochrome b-245, beta polypeptide) to the mycobacterial phagosome. In macrophages and in mice, M. tuberculosis mutants lacking cpsA are successfully cleared by NADPH oxidase and the ensuing LC3-associated lysosomal trafficking pathway. CpsA belongs to the LytR-CpsA-Psr family, which is found widely in Gram-positive bacilli. This family is known for its enzymatic role in cell wall assembly. However, our data suggest that CpsA inhibits CYBB oxidase independently of a cell wall function. Thus, CpsA may have evolved from an enzyme involved in cell wall integrity to an indispensable virulence factor that M. tuberculosis uses to evade the innate immune response.  相似文献   

19.
    
This study confirms that autophagy is activated concomitantly with KSHV lytic cycle induction, and that autophagy inhibition by BECN1 knockdown reduces viral lytic gene expression. In addition, we extend previous observations and show that autophagy is blocked at late steps, during viral replication. This is indicated by the lack of colocalization of autophagosomes and lysosomes and by the LC3-II level that does not increase in the presence of bafilomycin A1 in primary effusion lymphoma (PEL) cells induced to enter the lytic cycle, either by TPA/sodium butyrate (BC3 and BCBL1) or by doxycycline (TRExBCBL1-Rta). The autophagic block correlates with the downregulation of RAB7, whose silencing with specific siRNA results in an autophagic block in the same cells. Finally, by electron microscopy analysis, we observed viral particles inside autophagic vesicles in the cytoplasm of PEL cells undergoing viral replication, suggesting that they may be involved in viral transport.  相似文献   

20.
    
Phagocytosis plays a central role in immunity and tissue homeostasis. After internalization of cargo into single-membrane phagosomes, these compartments undergo a maturation sequences that terminates in lysosome fusion and cargo degradation. Components of the autophagy pathway have recently been linked to phagosome maturation in a process called LC3-associated phagocytosis (LAP). In this process, autophagy machinery is thought to conjugate LC3 directly onto the phagosomal membrane to promote lysosome fusion. However, a recent study has suggested that ATG proteins may in fact impair phagosome maturation to promote antigen presentation. Here, we examined the impact of ATG proteins on phagosome maturation in murine cells using FCGR2A/FcγR-dependent phagocytosis as a model. We show that phagosome maturation is not affected in Atg5-deficient mouse embryonic fibroblasts, or in Atg5- or Atg7-deficient bone marrow-derived macrophages using standard assays of phagosome maturation. We propose that ATG proteins may be required for phagosome maturation under some conditions, but are not universally required for this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号