首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-end rule pathway is a proteolytic system, in which single N-terminal residues act as a determinant of a class of degrons, called N-degrons. In the ubiquitin (Ub)-proteasome system, specific recognition components, called N-recognins, recognize N-degrons and accelerate polyubiquitination and proteasomal degradation of the substrates. In this study, we show that the pathway regulates the activity of the macroautophagic receptor SQSTM1/p62 (sequestosome 1) through N-terminal arginylation (Nt-arginylation) of endoplasmic reticulum (ER)-residing molecular chaperones, including HSPA5/GRP78/BiP, CALR (calreticulin), and PDI (protein disulfide isomerase). The arginylation is co-induced with macroautophagy (hereafter autophagy) as part of innate immunity to cytosolic DNA and when misfolded proteins accumulate under proteasomal inhibition. Following cytosolic relocalization and arginylation, Nt-arginylated HSPA5 (R-HSPA5) is targeted to autophagosomes and degraded by lysosomal hydrolases through the interaction of its N-terminal Arg (Nt-Arg) with ZZ domain of SQSTM1. Upon binding to Nt-Arg, SQSTM1 undergoes a conformational change, which promotes SQSTM1 self-polymerization and interaction with LC3, leading to SQSTM1 targeting to autophagosomes. Cargoes of R-HSPA5 include cytosolic misfolded proteins destined to be degraded through autophagy. Here, we discuss the mechanisms by which the N-end rule pathway regulates SQSTM1-dependent selective autophagy.  相似文献   

2.
In macroautophagy/autophagy, cargoes are collected by specific receptors, such as SQSTM1/p62 (sequestosome 1), and delivered to phagophores for lysosomal degradation. To date, little is known about how cells modulate SQSTM1 activity and autophagosome biogenesis in response to accumulating cargoes. In this study, we show that SQSTM1 is an N-recognin whose ZZ domain binds N-terminal arginine (Nt-Arg) and other N-degrons (Nt-Lys, Nt-His, Nt-Trp, Nt-Phe, and Nt-Tyr) of the N-end rule pathway. The substrates of SQSTM1 include the endoplasmic reticulum (ER)-residing chaperone HSPA5/GRP78/BiP. Upon N-end rule interaction with the Nt-Arg of arginylated HSPA5 (R-HSPA5), SQSTM1 undergoes self-polymerization via disulfide bonds of Cys residues including Cys113, facilitating cargo collection. In parallel, Nt-Arg-bound SQSTM1 acts as an inducer of autophagosome biogenesis and autophagic flux. Through this dual regulatory mechanism, SQSTM1 plays a key role in the crosstalk between the ubiquitin (Ub)-proteasome system (UPS) and autophagy. Based on these results, we employed 3D-modeling of SQSTM1 and a virtual chemical library to develop small molecule ligands to the ZZ domain of SQSTM1. These autophagy inducers accelerated the autophagic removal of mutant HTT (huntingtin) aggregates. We suggest that SQSTM1 can be exploited as a novel drug target to modulate autophagic processes in pathophysiological conditions.  相似文献   

3.
ABSTRACT

Cellular homeostasis requires selective autophagic degradation of damaged or defective organelles, including the endoplasmic reticulum (ER). Previous studies have shown that specific ER transmembrane receptors recruit LC3 on autophagic membranes by using LC3-interacting domains. In this study, we showed that the N-degron pathway mediates ubiquitin (Ub)-dependent reticulophagy. During this 2-step process, the ER transmembrane E3 ligase TRIM13 undergoes auto-ubiquitination via lysine 63 (K63) linkage chains and acts as a ligand for the autophagic receptor SQSTM1/p62 (sequestosome 1). In parallel, ER-residing molecular chaperones, such as HSPA5/GRP78/BiP, are relocated to the cytosol and conjugated with the amino acid L-arginine (Arg) at the N-termini by ATE1 (arginyltransferase 1). The resulting N-terminal Arg (Nt-Arg) binds the ZZ domain of SQSTM1, inducing oligomerization of SQSTM1-TRIM13 complexes and facilitating recruitment of LC3 on phagophores to the sites of reticulophagy. We developed small molecule ligands to the SQSTM1 ZZ domain and demonstrate that these chemical mimics of Nt-Arg facilitate reticulophagy and autophagic protein quality control of misfolded aggregates in the ER.  相似文献   

4.
Macroautophagy is induced under various stresses to remove cytotoxic materials, including misfolded proteins and their aggregates. These protein cargoes are collected by specific autophagic receptors such as SQSTM1/p62 (sequestosome 1) and delivered to phagophores for lysosomal degradation. To date, little is known about how cells sense and react to diverse stresses by inducing the activity of SQSTM1. Here, we show that the peroxiredoxin-like redox sensor PARK7/DJ-1 modulates the activity of SQSTM1 and the targeting of ubiquitin (Ub)-conjugated proteins to macroautophagy under oxidative stress caused by TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10). In this mechanism, TNFSF10 induces the N-terminal arginylation (Nt-arginylation) of the endoplasmic reticulum (ER)-residing molecular chaperone HSPA5/BiP/GRP78, leading to cytosolic accumulation of Nt-arginylated HSPA5 (R-HSPA5). In parallel, TNFSF10 induces the oxidation of PARK7. Oxidized PARK7 acts as a co-chaperone-like protein that binds the ER-derived chaperone R-HSPA5, a member of the HSPA/HSP70 family. By forming a complex with PARK7 (and possibly misfolded protein cargoes), R-HSPA5 binds SQSTM1 through its Nt-Arg, facilitating self-polymerization of SQSTM1 and the targeting of SQSTM1-cargo complexes to phagophores. The 3-way interaction among PARK7, R-HSPA5, and SQSTM1 is stabilized by the Nt-Arg residue of R-HSPA5. PARK7-deficient cells are impaired in the targeting of R-HSPA5 and SQSTM1 to phagophores and the removal of Ub-conjugated cargoes. Our results suggest that PARK7 functions as a co-chaperone for R-HSPA5 to modulate autophagic removal of misfolded protein cargoes generated by oxidative stress.  相似文献   

5.
Substrates of the N-end rule pathway include proteins with destabilizing N-terminal residues. Three of them, Asp, Glu, and (oxidized) Cys, function through their conjugation to Arg, one of destabilizing N-terminal residues that are recognized directly by the pathway's ubiquitin ligases. The conjugation of Arg is mediated by arginyltransferase, encoded by ATE1. Through its regulated degradation of specific proteins, the arginylation branch of the N-end rule pathway mediates, in particular, the cardiovascular development, the fidelity of chromosome segregation, and the control of signaling by nitric oxide. We show that mouse ATE1 specifies at least six mRNA isoforms, which are produced through alternative splicing, encode enzymatically active arginyltransferases, and are expressed at varying levels in mouse tissues. We also show that the ATE1 promoter is bidirectional, mediating the expression of both ATE1 and an oppositely oriented, previously uncharacterized gene. In addition, we identified GRP78 (glucose-regulated protein 78) and protein-disulfide isomerase as putative physiological substrates of arginyltransferase. Purified isoforms of arginyltransferase that contain the alternative first exons differentially arginylate these proteins in extract from ATE1(-/-) embryos, suggesting that specific isoforms may have distinct functions. Although the N-end rule pathway is apparently confined to the cytosol and the nucleus, and although GRP78 and protein-disulfide isomerase are located largely in the endoplasmic reticulum, recent evidence suggests that these proteins are also present in the cytosol and other compartments in vivo, where they may become N-end rule substrates.  相似文献   

6.
During proteasomal stress, cells can alleviate the accumulation of polyubiquitinated proteins by targeting them to perinuclear aggresomes for autophagic degradation, but the mechanism underlying the activation of this compensatory pathway remains unclear. Here we report that PINK1-s, a short form of Parkinson disease (PD)-related protein kinase PINK1 (PTEN induced putative kinase 1), is a major regulator of aggresome formation. PINK1-s is extremely unstable due to its recognition by the N-end rule pathway, and tends to accumulate in the cytosol during proteasomal stress. Overexpression of PINK1-s induces aggresome formation in cells with normal proteasomal activities, while loss of PINK1-s function leads to a significant decrease in the efficiency of aggresome formation induced by proteasomal inhibition. PINK1-s exerts its effect through phosphorylation of the ubiquitin-binding protein SQSTM1 (sequestosome 1) and increasing its ability to sequester polyubiquitinated proteins into aggresomes. These findings pinpoint PINK1-s as a sensor of proteasomal activities that transduces the proteasomal impairment signal to the aggresome formation machinery.  相似文献   

7.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Ubr1p, the recognition (E3) component of the Saccharomyces cerevisiae N-end rule pathway, contains at least two substrate-binding sites. The type 1 site is specific for N-terminal basic residues Arg, Lys, and His. The type 2 site is specific for N-terminal bulky hydrophobic residues Phe, Leu, Trp, Tyr, and Ile. Previous work has shown that dipeptides bearing either type 1 or type 2 N-terminal residues act as weak but specific inhibitors of the N-end rule pathway. We took advantage of the two-site architecture of Ubr1p to explore the feasibility of bivalent N-end rule inhibitors, whose expected higher efficacy would result from higher affinity of the cooperative (bivalent) binding to Ubr1p. The inhibitor comprised mixed tetramers of beta-galactosidase that bore both N-terminal Arg (type 1 residue) and N-terminal Leu (type 2 residue) but that were resistant to proteolysis in vivo. Expression of these constructs in S. cerevisiae inhibited the N-end rule pathway much more strongly than the expression of otherwise identical beta-galactosidase tetramers whose N-terminal residues were exclusively Arg or exclusively Leu. In addition to demonstrating spatial proximity between the type 1 and type 2 substrate-binding sites of Ubr1p, these results provide a route to high affinity inhibitors of the N-end rule pathway.  相似文献   

8.
PINK1, a mitochondrial serine/threonine kinase, is the product of a gene mutated in an autosomal recessive form of Parkinson disease. PINK1 is constitutively degraded by an unknown mechanism and stabilized selectively on damaged mitochondria where it can recruit the E3 ligase PARK2/PARKIN to induce mitophagy. Here, we show that, under steady-state conditions, endogenous PINK1 is constitutively and rapidly degraded by E3 ubiquitin ligases UBR1, UBR2 and UBR4 through the N-end rule pathway. Following precursor import into mitochondria, PINK1 is cleaved in the transmembrane segment by a mitochondrial intramembrane protease PARL generating an N-terminal destabilizing amino acid and then retrotranslocates from mitochondria to the cytosol for N-end recognition and proteasomal degradation. Thus, sequential actions of mitochondrial import, PARL-processing, retrotranslocation and recognition by N-end rule E3 enzymes for the ubiquitin proteosomal degradation defines the rapid PINK1 turnover. PINK1 steady-state elimination by the N-end rule identifies a novel organelle to cytoplasm turnover pathway that yields a mechanism to flag damaged mitochondria for autophagic elimination.  相似文献   

9.
The N-end rule pathway is a proteolytic system in which destabilizing N-terminal amino acids of short lived proteins are recognized by recognition components (N-recognins) as an essential element of degrons, called N-degrons. In eukaryotes, the major way to generate N-degrons is through arginylation by ATE1 arginyl-tRNA-protein transferases, which transfer Arg from aminoacyl-tRNA to N-terminal Asp and Glu (and Cys as well in mammals). We have shown previously that ATE1-deficient mice die during embryogenesis with defects in cardiac and vascular development. Here, we characterized the arginylation-dependent N-end rule pathway in cardiomyocytes. Our results suggest that the cardiac and vascular defects in ATE1-deficient embryos are independent from each other and cell-autonomous. ATE1-deficient myocardium and cardiomyocytes therein, but not non-cardiomyocytes, showed reduced DNA synthesis and mitotic activity ~24 h before the onset of cardiac and vascular defects at embryonic day 12.5 associated with the impairment in the phospholipase C/PKC-MEK1-ERK axis of Gα(q)-mediated cardiac signaling pathways. Cardiac overexpression of Gα(q) rescued ATE1-deficient embryos from thin myocardium and ventricular septal defect but not from vascular defects, genetically dissecting vascular defects from cardiac defects. The misregulation in cardiovascular signaling can be attributed in part to the failure in hypoxia-sensitive degradation of RGS4, a GTPase-activating protein for Gα(q). This study is the first to characterize the N-end rule pathway in cardiomyocytes and reveals the role of its arginylation branch in Gα(q)-mediated signaling of cardiomyocytes in part through N-degron-based, oxygen-sensitive proteolysis of G-protein regulators.  相似文献   

10.
The N-end rule degradation pathway states that the half-life of a protein is determined by the nature of its N-terminal residue. In Escherichia coli the adaptor protein ClpS directly interacts with destabilizing N-terminal residues and transfers them to the ClpA/ClpP proteolytic complex for degradation. The crucial role of ClpS in N-end rule degradation is currently under debate, since ClpA/ClpP was shown to process selected N-terminal degrons harbouring destabilizing residues in the absence of ClpS. Here, we investigated the contribution of ClpS to N-end rule degradation by two approaches. First, we performed a systematic mutagenesis of selected N-degron model substrates, demonstrating that ClpS but not ClpA specifically senses the nature of N-terminal residues. Second, we identified two natural N-end rule substrates of E. coli : Dps and PATase (YgjG). The in vivo degradation of both proteins strictly relied on ClpS, thereby establishing the function of ClpS as the essential discriminator of the E. coli N-end rule pathway.  相似文献   

11.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. We used an expression-cloning screen to search for mouse proteins that are degraded by the ubiquitin/proteasome-dependent N-end rule pathway in a reticulocyte lysate. One substrate thus identified was RGS4, a member of the RGS family of GTPase-activating proteins that down-regulate specific G proteins. A determinant of the RGS4 degradation signal (degron) was located at the N terminus of RGS4, because converting cysteine 2 to either glycine, alanine, or valine completely stabilized RGS4. Radiochemical sequencing indicated that the N-terminal methionine of the lysate-produced RGS4 was replaced with arginine. Since N-terminal arginine is a destabilizing residue not encoded by RGS4 mRNA, we conclude that the degron of RGS4 is generated through the removal of N-terminal methionine and enzymatic arginylation of the resulting N-terminal cysteine. RGS16, another member of the RGS family, was also found to be an N-end rule substrate. RGS4 that was transiently expressed in mouse L cells was short-lived in these cells. However, the targeting of RGS4 for degradation in this in vivo setting involved primarily another degron, because N-terminal variants of RGS4 that were stable in reticulocyte lysate remained unstable in L cells.  相似文献   

12.
13.
Ubiquitin E3 ligases target their substrates for ubiquitination, leading to proteasome-mediated degradation or altered biochemical properties. The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule proteolytic pathway, recognizes proteins with N-terminal destabilizing residues and plays an important role in spermatogenesis. Tex19.1 (also known as Tex19) has been previously identified as a germ cell-specific protein in mouse testis. Here we report that Tex19.1 forms a stable protein complex with Ubr2 in mouse testes. The binding of Tex19.1 to Ubr2 is independent of the second position cysteine of Tex19.1, a putative target for arginylation by the N-end rule pathway R-transferase. The Tex19.1-null mouse mutant phenocopies the Ubr2-deficient mutant in three aspects: heterogeneity of spermatogenic defects, meiotic chromosomal asynapsis, and embryonic lethality preferentially affecting females. In Ubr2-deficient germ cells, Tex19.1 is transcribed, but Tex19.1 protein is absent. Our results suggest that the binding of Ubr2 to Tex19.1 metabolically stabilizes Tex19.1 during spermatogenesis, revealing a new function for Ubr2 outside the conventional N-end rule pathway.  相似文献   

14.
Ding WX  Yin XM 《Autophagy》2008,4(2):141-150
Based on a functional categorization, proteins may be grouped into three types and sorted to either the proteasome or the macroautophagy pathway for degradation. The two pathways are mechanistically connected but their capacity seems different. Macroautophagy can degrade all forms of misfolded proteins whereas proteasomal degradation is likely limited to soluble ones. Unlike the bulk protein degradation that occurs during starvation, autophagic degradation of misfolded proteins can have a degree of specificity, determined by ubiquitin modification and the interactions of p62/SQSTM1 and HDAC6. Macroautophagy is initiated in response to endoplasmic reticulum (ER) stress caused by misfolded proteins, via the ER-activated autophagy (ERAA) pathway, which activates a partial unfolded protein response involving PERK and/or IRE1, and a calcium-mediated signaling cascade. ERAA serves the function of mitigating ER stress and suppressing cell death, which may be explored for controlling protein conformational diseases. Conversely, inhibition of ERAA may be explored for sensitizing resistant tumor cells to cytotoxic agents.  相似文献   

15.
In the N-end rule pathway of protein degradation, the destabilizing activity of N-terminal Asp, Glu or (oxidized) Cys residues requires their conjugation to Arg, which is recognized directly by pathway''s ubiquitin ligases. N-terminal arginylation is mediated by the Ate1 arginyltransferase, whose physiological substrates include the Rgs4, Rgs5 and Rgs16 regulators of G proteins. Here, we employed the Cre-lox technique to uncover new physiological functions of N-terminal arginylation in adult mice. We show that postnatal deletion of mouse Ate1 (its unconditional deletion is embryonic lethal) causes a rapid decrease of body weight and results in early death of ∼15% of Ate1-deficient mice. Despite being hyperphagic, the surviving Ate1-deficient mice contain little visceral fat. They also exhibit an increased metabolic rate, ectopic induction of the Ucp1 uncoupling protein in white fat, and are resistant to diet-induced obesity. In addition, Ate1-deficient mice have enlarged brains, an enhanced startle response, are strikingly hyperkinetic, and are prone to seizures and kyphosis. Ate1-deficient males are also infertile, owing to defects in Ate1−/− spermatocytes. The remarkably broad range of specific biological processes that are shown here to be perturbed by the loss of N-terminal arginylation will make possible the dissection of regulatory circuits that involve Ate1 and either its known substrates, such as Rgs4, Rgs5 and Rgs16, or those currently unknown.  相似文献   

16.
《Autophagy》2013,9(2):141-150
Based on a functional categorization, proteins may be grouped into three types and sorted to either the proteasome or the macroautophagy pathway for degradation. The two pathways are mechanistically connected but their capacity seems different. Macroautophagy can degrade all forms of misfolded proteins whereas proteasomal degradation is likely limited to soluble ones.Unlike the bulk protein degradation that occurs during starvation, autophagic degradation of misfolded proteins can have a degree of specificity, determined by ubiquitin modification and the interactions of p62/SQSTM1 and HDAC6. Macroautophagy is initiated in response to endoplasmic reticulum (ER) stress caused by misfolded proteins, via the ER-activated autophagy (ERAA) pathway, which activates a partial unfolded protein response involving PERK and/or IRE1, and a calcium-mediated signaling cascade. ERAA serves the function of mitigating ER stress and suppressing cell death, which may be explored for controlling protein conformational diseases. Conversely, inhibition of ERAA may be explored for sensitizing resistant tumor cells to cytotoxic agents.  相似文献   

17.
The ubiquitin-proteasome system and the autophagy lysosome system are the two major protein degradation machineries in eukaryotic cells. These two systems coordinate the removal of unwanted intracellular materials, but the mechanism by which they achieve this synchronization is largely unknown. The ubiquitination of substrates serves as a universal degradation signal for both systems. Our study revealed that the amino-terminal Arg, a canonical N-degron in the ubiquitin-proteasome system, also acts as a degradation signal in autophagy. We showed that many ER residents, such as BiP, contain evolutionally conserved arginylation permissive pro-N-degrons, and that certain inducers like dsDNA or proteasome inhibitors cause their translocation into the cytoplasm where they bind misfolded proteins and undergo amino-terminal arginylation by arginyl transferase 1 (ATE1). The amino-terminal Arg of BiP binds p62, which triggers p62 oligomerization and enhances p62-LC3 interaction, thereby stimulating autophagic delivery and degradation of misfolded proteins, promoting cell survival. This study reveals a novel ubiquitin-independent mechanism for the selective autophagy pathway, and provides an insight into how these two major protein degradation pathways communicate in cells to dispose the unwanted proteins. [BMB Reports 2015; 48(9): 487-488]  相似文献   

18.
The N-end rule pathway is a cellular proteolytic system that utilizes specific N-terminal residues as degradation determinants, called N-degrons. N-degrons are recognized and bound by specific recognition components (N-recognins) that mediate polyubiquitination of low-abundance regulators and selective proteolysis through the proteasome. Our earlier work identified UBR4/p600 as one of the N-recognins that promotes N-degron-dependent proteasomal degradation. In this study, we show that UBR4 is associated with cellular cargoes destined to autophagic vacuoles and is degraded by the lysosome. UBR4 loss causes multiple misregulations in autophagic pathways, including an increased formation of LC3 puncta. UBR4-deficient mice die during embryogenesis primarily due to defective vascular development in the yolk sac (YS), wherein UBR4 is associated with a bulk lysosomal degradation system that absorbs maternal proteins from the YS cavity and digests them into amino acids. Our results suggest that UBR4 plays a role not only in selective proteolysis of short-lived regulators through the proteasome, but also bulk degradation through the lysosome. Here, we discuss a possible mechanism of UBR4 as a regulatory component in the delivery of cargoes destined to interact with the autophagic core machinery.  相似文献   

19.
The N-end rule is a degradation pathway conserved from bacteria to mammals that links a protein's stability in vivo to the identity of its N-terminal residue. In Escherichia coli, the components of this pathway directly responsible for protein degradation are the ClpAP protease and its adaptor ClpS. We recently demonstrated that ClpAP is able to recognize N-end motifs in the absence of ClpS although with significantly reduced substrate affinity. In this study, a systematic sequence analysis reveals new features of N-end rule degradation signals. To achieve specificity, recognition of an N-end motif by the protease-adaptor complex uses both the identity of the N-terminal residue and a free alpha-amino group. Acidic residues near the first residue decrease substrate affinity, demonstrating that the identity of adjacent residues can affect recognition although significant flexibility is tolerated. However, shortening the distance between the N-end residue and the stably folded portion of a protein prevents degradation entirely, indicating that an N-end signal alone is not always sufficient for degradation. Together, these data define in vitro the sequence and structural requirements for the function of bacterial N-end signals.  相似文献   

20.
Macrophages from certain inbred mouse strains are rapidly killed (< 90 min) by anthrax lethal toxin (LT). LT cleaves cytoplasmic MEK proteins at 20 min and induces caspase-1 activation in sensitive macrophages at 50-60 min, but the mechanism of LT-induced death is unknown. Proteasome inhibitors block LT-mediated caspase-1 activation and can protect against cell death, indicating that the degradation of at least one cellular protein is required for LT-mediated cell death. Proteins can be degraded by the proteasome via the N-end rule, in which a protein's stability is determined by its N-terminal residue. Using amino acid derivatives that act as inhibitors of this pathway, we show that the N-end rule is required for LT-mediated caspase-1 activation and cell death. We also found that bestatin methyl ester, an aminopeptidase inhibitor protects against LT in vitro and in vivo and that the different inhibitors of the protein degradation pathway act synergistically in protecting against LT. We identify c-IAP1, a mammalian member of the inhibitor of apoptosis protein (IAP) family, as a novel N-end rule substrate degraded in macrophages treated with LT. We also show that LT-induced c-IAP1 degradation is independent of the IAP-antagonizing proteins Smac/DIABLO and Omi/HtrA2, but dependent on caspases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号