共查询到20条相似文献,搜索用时 13 毫秒
1.
Kun Liu Enpeng Zhao Ghulam Ilyas Gadi Lalazar Yu Lin Muhammad Haseeb Kathryn E Tanaka Mark J Czaja 《Autophagy》2015,11(2):271-284
Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury. 相似文献
2.
Elma Aflaki Nima Moaven Daniel K. Borger Grisel Lopez Wendy Westbroek Jae Jin Chae Juan Marugan Samarjit Patnaik Emerson Maniwang Ashley N. Gonzalez Ellen Sidransky 《Aging cell》2016,15(1):77-88
Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylcer‐amide macrophages, the accumulation of glucosylceramide in lysosomes and the secretion of inflammatory cytokines. However, the connection between this lysosomal storage and inflammation is not clear. Studying macrophages derived from peripheral monocytes from patients with type 1 Gaucher disease with genotype N370S/N370S, we confirmed an increased secretion of interleukins IL‐1β and IL‐6. In addition, we found that activation of the inflammasome, a multiprotein complex that activates caspase‐1, led to the maturation of IL‐1β in Gaucher macrophages. We show that inflammasome activation in these cells is the result of impaired autophagy. Treatment with the small‐molecule glucocerebrosidase chaperone NCGC758 reversed these defects, inducing autophagy and reducing IL‐1β secretion, confirming the role of the deficiency of lysosomal glucocerebrosidase in these processes. We found that in Gaucher macrophages elevated levels of the autophagic adaptor p62 prevented the delivery of inflammasomes to autophagosomes. This increase in p62 led to activation of p65‐NF‐kB in the nucleus, promoting the expression of inflammatory cytokines and the secretion of IL‐1β. This newly elucidated mechanism ties lysosomal dysfunction to inflammasome activation, and may contribute to the massive organomegaly, bone involvement and increased susceptibility to certain malignancies seen in Gaucher disease. Moreover, this link between lysosomal storage, impaired autophagy, and inflammation may have implications relevant to both Parkinson disease and the aging process. Defects in these basic cellular processes may also provide new therapeutic targets. 相似文献
3.
Autophagy is the host innate immune system's first line of defense against microbial intruders. When the innate defense system recognizes invading bacterial pathogens and their infection processes, autophagic proteins act as cytosolic sensors that allow the autophagic pathway to be rapidly activated. However, many intracellular bacterial pathogens deploy highly evolved mechanisms to evade autophagic recognition, manipulate the autophagic pathway, and remodel the autophagosomal compartment for their own benefit. Here current topics regarding the recognition of invasive bacteria by the cytosolic innate immune system are highlighted, including autophagy and the mechanisms that enable bacteria to evade autophagy. Also highlighted are some selective examples of bacterial activities that manipulate the autophagic pathways for their own benefit. 相似文献
4.
5.
天然免疫是机体通过识别自身或外部危险信号后,为维持体内稳态而逐步建立起来的一系列防御反应,当宿主细胞内的模式识别受体识别胞内病原相关分子模式后激活干扰素(interferon, IFN)、核因子-kappa B (nuclear factor-kappa B, NF-κB)和炎性小体等信号通路。IFNs在天然免疫应答中发挥重要作用,它诱导的抗病毒基因能够通过多种方式抵御病毒的感染,炎症反应则是机体自动的防御反应,能够在病毒感染机体时释放促炎性细胞因子以调控机体的免疫反应,进而发挥抗病毒作用。在病毒感染过程中,IFN信号通路与炎症反应调控网络中的关键分子如NF-κB/RelA、PKR等存在一定的交互作用,此外,IFN信号通路及其产生的细胞因子又影响其他信号通路的活化,进而调控机体的免疫应答以维持自身稳态,它们之间的交互调控失衡将会引起过度炎症反应,导致组织器官的免疫病理损伤,例如SARS-CoV-2感染机体时产生的过度炎症反应。本文综述了机体抗病毒免疫过程中干扰素信号通路与炎症反应之间的交互调控,为研发抗病毒策略提供新思路。 相似文献
6.
The fine‐tuning of innate immune responses is an important aspect of host defenses against mycobacteria. MicroRNAs (miRNAs), small non‐coding RNAs, play essential roles in regulating multiple biological pathways including innate host defenses against various infections. Accumulating evidence shows that many miRNAs regulate the complex interplay between mycobacterial survival strategies and host innate immune pathways. Recent studies have contributed to understanding the role of miRNAs, the levels of which can be modulated by mycobacterial infection, in tuning host autophagy to control bacterial survival and innate effector function. Despite considerable efforts devoted to miRNA profiling over the past decade, further work is needed to improve the selection of appropriate biomarkers for tuberculosis. Understanding the roles and mechanisms of miRNAs in regulating innate immune signaling and autophagy may provide insights into new therapeutic modalities for host‐directed anti‐mycobacterial therapies. Here, we present a comprehensive review of the recent literature regarding miRNA profiling in tuberculosis and the roles of miRNAs in modulating innate immune responses and autophagy defenses against mycobacterial infections. 相似文献
7.
8.
随着现代医疗技术的发展,人口老龄化加剧,抗生素滥用等降低人体免疫力的因素越来越多,使得由白色念珠菌Candida albicans感染引起的疾病发生率越来越高。本研究通过使用程序性坏死的选择性抑制剂Necrostatin-1,初步探索了细胞自噬和程序性死亡在巨噬细胞抗白色念珠菌感染中的作用。研究表明:细胞自噬参与了白色念珠菌侵染巨噬细胞的过程,而Necrostatin-1可能通过抑制白色念珠菌感染引起的自噬促进IL-6的表达,并抑制TNF-α(肿瘤坏死因子α)的表达,进而对白色念珠菌引起的天然免疫反应产生影响。细胞自噬在抗真菌感染方面的研究已有报道,而程序性坏死在抗真菌感染方面的研究鲜有报道,同时Necrostatin-1在巨噬细胞抗白色念珠菌感染中的作用尚未见报道。本研究对白色念珠菌侵染机理的探索具有一定的意义。 相似文献
9.
Urja Naik Quynh Phuong Hai Nguyen Rene E. Harrison 《Journal of cellular biochemistry》2020,121(1):183-199
Our current understanding of phagocytosis is largely derived from studies of individual receptor-ligand interactions and their downstream signaling pathways. Because phagocytes are exposed to a variety of ligands on heterogeneous target particles in vivo, it is important to observe the engagement of multiple receptors simultaneously and the triggered involvement of downstream signaling pathways. Potential crosstalk between the two well-characterized opsonic receptors, FcγR and CR3, was briefly explored in the early 1970s, where macrophages were challenged with dual-opsonized targets. However, subsequent studies on receptor crosstalk were primarily restricted to using single opsonins on different targets, typically at saturating opsonin conditions. Beyond validating these initial explorations on receptor crosstalk, we identify the early signaling mechanisms that underlie the binding and phagocytosis during the simultaneous activation of both opsonic receptors, through the presence of a dual-opsonized target (immunoglobulin G [IgG] and C3bi), compared with single receptor activation. For this purpose, we used signaling protein inhibitor studies as well as live cell brightfield and fluorescent imaging to fully understand the role of tyrosine kinases, F-actin dynamics and internalization kinetics for FcγR and CR3. Importantly, opsonic receptors were studied together and in isolation, in the context of sparsely opsonized targets. We observed enhanced particle binding and a synergistic effect on particle internalization during the simultaneous activation of FcγR and CR3 engaged with sparsely opsonized targets. Inhibition of early signaling and cytoskeletal molecules revealed a differential involvement of Src kinase for FcγR- vs CR3- and dual receptor-mediated phagocytosis. Src activity recruits Syk kinase and we observed intermediate levels of Syk phosphorylation in dual-opsonized particles compared with those opsonized with IgG or C3bi alone. These results likely explain the intermediate levels of F-actin that is recruited to sites of dual-opsonized particle uptake and the notoriously delayed internalization of C3bi-opsonized targets by macrophages. 相似文献
10.
炎症小体在机体血脑屏障损伤中的作用机制研究进展 总被引:1,自引:0,他引:1
血脑屏障(blood-brain barrier,BBB)是一种天然的结构和功能屏障,可抑制病原体的进入并严格控制分子进入脑实质,完整的血脑屏障对于维持中枢神经系统内稳态至关重要。这一屏障功能是由特殊的多细胞结构决定的,每一种组成的细胞类型对血脑屏障的完整性都有不可或缺的贡献。炎症小体(inflammasome)是先天免疫系统最重要的组成部分之一,是一种多蛋白复合体。当病原侵入或机体产生过度免疫反应时,能够激活炎症小体并介导大量细胞因子以及趋化因子分泌。细胞因子及趋化因子表达上调会引起血脑屏障破坏,导致病原突破血脑屏障进入中枢神经系统,引发机体各种脑内疾病。本文就感染性疾病与非感染性疾病这两种情况下,对炎症小体介导机体血脑屏障的损伤进行综述,并列举了当前针对血脑屏障损伤的不同修复方式。 相似文献
11.
Autophagy is a major intracellular process for the degradation of cytosolic macromolecules and organelles in the lysosomes or vacuoles for the purposes of regulating cellular homeostasis and protein and organelle quality control. In complex metazoan organisms, autophagy is highly engaged during the immune responses through interfaces either directly with intracellular pathogens or indirectly with immune signalling molecules. Studies over the last decade or so have also revealed a number of important ways in which autophagy shapes plant innate immune responses. First, autophagy promotes defence‐associated hypersensitive cell death induced by avirulent or related pathogens, but restricts unnecessary or disease‐associated spread of cell death. This elaborate regulation of plant host cell death by autophagy is critical during plant immune responses to the types of plant pathogens that induce cell death, which include avirulent biotrophic pathogens and necrotrophic pathogens. Second, autophagy modulates defence responses regulated by salicylic acid and jasmonic acid, thereby influencing plant basal resistance to both biotrophic and necrotrophic pathogens. Third, there is an emerging role of autophagy in virus‐induced RNA silencing, either as an antiviral collaborator for targeted degradation of viral RNA silencing suppressors or an accomplice of viral RNA silencing suppressors for targeted degradation of key components of plant cellular RNA silencing machinery. In this review, we summarize this important progress and discuss the potential significance of the perplexing role of autophagy in plant innate immunity. 相似文献
12.
ABSTRACT Major histocompatibility complex class I (MHC-I) is a key molecule in anti-tumor adaptive immunity. MHC-I is essential for endogenous antigen presentation by cancer cells and subsequent recognition and clearance by CD8+ T cells. Defects in MHC-I expression occur frequently in several cancers, leading to impaired antigen presentation, immune evasion and/or resistance to immune checkpoint blockade (ICB) therapy. Pancreatic ductal adenocarcinoma (PDAC), a deadly malignancy with dismal patient prognosis, is resistant to ICB and shows frequent downregulation of MHC-I independent of genetic mutations abrogating MHC-I expression. Previously, we showed that PDAC cells exhibit elevated levels of autophagy and lysosomal biogenesis, which together support the survival and growth of PDAC tumors via both cell-autonomous and non-cell-autonomous mechanisms. In our recent study, we have identified NBR1-mediated selective macroautophagy/autophagy of MHC-I as a novel mechanism that facilitates immune evasion by PDAC cells. Importantly, autophagy or lysosome inhibition restores MHC-I expression, leading to enhanced anti-tumor T cell immunity and improved response to ICB in transplanted tumor models in syngeneic host mice. Our results highlight a previously unknown function of autophagy and the lysosome in regulation of immunogenicity in PDAC, and provide a novel therapeutic strategy for targeting this deadly disease. 相似文献
13.
IL‐7 suppresses macrophage autophagy and promotes liver pathology in Schistosoma japonicum‐infected mice 下载免费PDF全文
Jifeng Zhu Weiwei Zhang Lina Zhang Lei Xu Xiaojun Chen Sha Zhou Zhipeng Xu Ming Xiao Hui Bai Feng Liu Chuan Su 《Journal of cellular and molecular medicine》2018,22(7):3353-3363
In schistosomiasis japonica and mansoni, parasite eggs trapped in host liver elicit severe liver granulomatous inflammation that subsequently leads to periportal fibrosis, portal hypertension, haemorrhage or even death. Macrophages are critical for granuloma formation and the development of liver fibrosis during schistosomiasis. However, whether the aberrant regulation of macrophage autophagy has an effect on the development of liver immunopathology in schistosomiasis remains to be elucidated. In this study, we showed that Schistosoma japonicum (S. japonicum) egg antigen (SEA)‐triggered macrophage autophagy limited the development of pathology in host liver. However, engagement of IL‐7 receptor (IL‐7R/CD127) on macrophages by S. japonicum infection‐induced IL‐7 significantly suppressed SEA‐triggered macrophage autophagy, which led to an enhanced liver pathology. In addition, anti‐IL‐7 neutralizing antibody or anti‐CD127 blocking antibody treatment increased macrophage autophagy and suppressed liver pathology. Finally, we demonstrated that IL‐7 protects macrophage against SEA‐induced autophagy through activation of AMP‐activated protein kinase (AMPK). Our study reveals a novel role for IL‐7 in macrophage autophagy and identifies AMPK as a novel downstream mediator of IL‐7‐IL‐7R signalling and suggests that manipulation of macrophage autophagy by targeting IL‐7‐IL‐7R signalling may have the potential to lead to improved treatment options for liver pathogenesis in schistosomiasis. 相似文献
14.
《Autophagy》2013,9(4):704-706
A major challenge in formulating an effective immunotherapy is to overcome the mechanisms of tumor escape from immunosurveillance. We showed that hypoxia-induced autophagy impairs cytotoxic T-lymphocyte (CTL)-mediated tumor cell lysis by regulating phospho-STAT3 in target cells. Autophagy inhibition in hypoxic cells decreases phospho-STAT3 and restores CTL-mediated tumor cell killing by a mechanism involving the ubiquitin proteasome system and SQSTM1/p62. Simultaneously boosting the CTL-response, using a TRP-peptide vaccination strategy, and targeting autophagy in hypoxic tumors, improves the efficacy of cancer vaccines and promotes tumor regression in vivo. Overall, in addition to its immunosuppressive effect, the hypoxic microenvironment also contributes to immunoresistance and can be detrimental to antitumor effector cell functions. 相似文献
15.
Erwin Knecht Carmen Aguado Sovan Sarkar Viktor I Korolchuk Olga Criado-García Santiago Vernia Patricia Boya Pascual Sanz Santiago Rodríguez de Córdoba David C Rubinsztein 《Autophagy》2010,6(7):991-993
Lafora disease (LD) is a progressive, lethal, autosomal recessive, neurodegenerative disorder that manifests with myoclonus epilepsy. LD is characterized by the presence of intracellular inclusion bodies called Lafora bodies (LB), in brain, spinal cord and other tissues. More than 50 percent of LD is caused by mutations in EPM2A that encodes laforin. Here we review our recent findings that revealed that laforin regulates autophagy. We consider how autophagy compromise may predispose to LB formation and neurodegeneration in LD, and discuss future investigations suggested by our data.Key words: autophagy, glycogen metabolism, Lafora disease, laforin, malin, neurodegeneration 相似文献
16.
《Molecular cell》2022,82(15):2844-2857.e10
17.
Suresh Kumar Seong Won Choi Yuexi Gu Michal Mudd Nicolas Dupont Shanya Jiang Ryan Peters Farzin Farzam Ashish Jain Keith A Lidke Christopher M Adams Terje Johansen Vojo Deretic 《The EMBO journal》2017,36(1):42-60
Autophagy is a process delivering cytoplasmic components to lysosomes for degradation. Autophagy may, however, play a role in unconventional secretion of leaderless cytosolic proteins. How secretory autophagy diverges from degradative autophagy remains unclear. Here we show that in response to lysosomal damage, the prototypical cytosolic secretory autophagy cargo IL‐1β is recognized by specialized secretory autophagy cargo receptor TRIM16 and that this receptor interacts with the R‐SNARE Sec22b to recruit cargo to the LC3‐II+ sequestration membranes. Cargo secretion is unaffected by downregulation of syntaxin 17, a SNARE promoting autophagosome–lysosome fusion and cargo degradation. Instead, Sec22b in combination with plasma membrane syntaxin 3 and syntaxin 4 as well as SNAP‐23 and SNAP‐29 completes cargo secretion. Thus, secretory autophagy utilizes a specialized cytosolic cargo receptor and a dedicated SNARE system. Other unconventionally secreted cargo, such as ferritin, is secreted via the same pathway. 相似文献
18.
Wenxiu Liu Jiaxing Sun Yutong Guo Na Liu Xue Ding Xin Zhang Jinyu Chi Ningning Kang Yue Liu Xinhua Yin 《Journal of cellular and molecular medicine》2020,24(22):13440
The calcium‐sensing receptor (CaSR) is involved in the pathophysiology of many cardiovascular diseases, including myocardial infarction (MI) and hypertension. The role of Calhex231, a specific inhibitor of CaSR, in myocardial fibrosis following MI is still unclear. Using Wistar rats, we investigated whether Calhex231 ameliorates myocardial fibrosis through the autophagy‐NLRP3 inflammasome pathway in macrophages post myocardial infarction (MI). The rats were randomly divided into sham, MI and MI + Calhex231 groups. Compared with the sham rats, the MI rats consistently developed severe cardiac function, myocardial fibrosis and infiltration of inflammatory cells including macrophages. Moreover, inflammatory pathway including activation of NLRP3 inflammasome, IL‐1β and autophagy was significantly up‐regulated in myocardial tissue, infiltrated cardiac macrophages and peritoneal macrophages of the MI rats. These impacts were reversed by Calhex231. In vitro, studies revealed that calindol and rapamycin exacerbated MI‐induced autophagy and NLRP3 inflammasome activation in peritoneal macrophages. Calhex231 and 3‐Methyladenine (a specific inhibitor of autophagy) attenuated both autophagy and NLRP3 inflammasome activation; however, the caspase‐1 inhibitor Z‐YVAD‐FMK did not. Our study indicated that Calhex231 improved cardiac function and ameliorated myocardial fibrosis post MI, likely via the inhibition of autophagy‐mediated NLRP3 inflammasome activation; this provides a new therapeutic target for ventricular remodelling‐related cardiovascular diseases. 相似文献