首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Macroautophagy/autophagy is a self-degradation process that combats starvation. Lipids are the main energy source in kidney proximal tubular cells (PTCs). During starvation, PTCs increase fatty acid (FA) uptake, form intracellular lipid droplets (LDs), and hydrolyze them for use. The involvement of autophagy in lipid metabolism in the kidney remains largely unknown. Here, we investigated the autophagy-mediated regulation of renal lipid metabolism during prolonged starvation using PTC-specific Atg5-deficient (atg5-TSKO) mice and an in vitro serum starvation model. Twenty-four h of starvation comparably induced LD formation in the PTCs of control and atg5-TSKO mice; however, additional 24 h of starvation reduced the number of LDs in control mice, whereas increases were observed in atg5-TSKO mice. Autophagic degradation of LDs (lipophagy) in PTCs was demonstrated by electron microscopic observation and biochemical analysis. In vitro pulse-chase assays demonstrated that lipophagy mobilizes FAs from LDs to mitochondria during starvation, whereas impaired LD degradation in autophagy-deficient PTCs led to decreased ATP production and subsequent cell death. In contrast to the in vitro assay, despite impaired LD degradation, kidney ATP content was preserved in 48-h starved atg5-TSKO mice, probably due to increased utilization of ketone bodies. This compensatory mechanism was accompanied by a higher plasma FGF21 (fibroblast growth factor 21) level and its expression in the PTCs; however, this was not essential for the production of ketone bodies in the liver during prolonged starvation. In conclusion, lipophagy combats prolonged starvation in PTCs to avoid cellular energy depletion.  相似文献   

2.
This study was an attempt to discover whether a deficiency in hepatic oxaloacetate can explain the acceleration of ketogenesis observed after the ingestion of medium-chain triglycerides (MCT, constituent fatty acids from C8 to C12). The method of investigation used consisted in supplying oxaloacetate (by intraperitoneal injection of oxaloacetate, aspartate, or L-tryptophan) to rats that had ingested MCT. The indirectly given oxaloacetate caused a decrease in ketone body levels in the liver. The stimulation of ketogenesis induced by an exogenous supply of MCT is therefore at least partly due to a deficiency of oxaloacetate. The results show that this can be explained both by a leakage of this metabolite into the pathway of gluconeogenesis and by its reduction into malate. Since the acetyl-CoA derived from oxidized medium-chain fatty acids cannot enter into the Krebs cycle, it is diverted to the production of ketone bodies.  相似文献   

3.
Ketone body metabolism during development   总被引:1,自引:0,他引:1  
This paper briefly reviews the role of ketone bodies during development in the rat. Regulation of ketogenesis is in part dependent on the supply to the liver of medium- and long-chain fatty acids derived from mother's milk. The partitioning of long-chain fatty acids between the hepatic esterification and oxidation pathways is controlled by the concentration of malonyl-CoA, a key intermediate in the conversion of carbohydrate to lipid. As hepatic lipogenesis is depressed during the suckling period, [malonyl-CoA] is low and entry of long-chain acyl-CoA into the mitochondria for partial oxidation to ketone bodies is not restrained. Removal of ketone bodies by developing tissues is regulated by their availability in the circulation and by the activities of the enzymes of ketone body utilization. The patterns of activities of these enzymes differ among tissues during development so that the neonatal brain is an important site of ketone body utilization. The major role of ketone bodies in development is as an oxidative fuel to spare glucose, but they can also act as lipid precursors.  相似文献   

4.
Autophagy is a lysosomal degradation pathway in which the cell self-digests its own components to provide nutrients in harsh environmental conditions. It also represents an opportunity to rid the cell of superfluous and damaged organelles, misfolded proteins or invaded microorganisms. Liver autophagy contributes to basic hepatic functions such as lipid, glycogen and protein turnover. Deregulated hepatic autophagy has been linked to many liver diseases including alpha-1-antitrypsin deficiency, alcoholic and non-alcoholic fatty liver diseases, hepatitis B and C infections, liver fibrosis as well as liver cancer. Recently, bile acids and the bile acid receptor FXR have been implicated in the regulation of hepatic autophagy, which implies a role of autophagy also for cholestatic liver diseases. This review summarizes the current evidence of bile acid mediated effects on autophagy and how this affects cholestatic liver diseases. Although detailed studies are lacking, we suggest a concept that the activity of autophagy in cholestasis depends on the disease stage, where autophagy may be induced at early stages (“cholestophagy”) but may be impaired in prolonged cholestatic states (“cholestopagy”).  相似文献   

5.
The unusual energy metabolism of elasmobranchs is characterized by limited or absent fatty acid oxidation in cardiac and skeletal muscle and a great reliance on ketone bodies and amino acids as oxidative fuels in these tissues. Other extrahepatic tissues in elasmobranchs rely on ketone bodies and amino acids for aerobic energy production but, unlike muscle, also appear to possess a significant capacity to oxidize fatty acids. This organization of energy metabolism is reflected by relatively low plasma levels of non-esterified fatty acids (NEFA) and by plasma levels of the ketone body ß-hydroxybutyrate that are as high as those seen in fasted mammals. The preference for ketone body oxidation rather than fatty acid oxidation in muscle of elasmobranchs under routine conditions is opposite to the situation in teleosts and mammals. Carbohydrates appear to be utilized as a fuel source in elasmobranchs, similar to other vertebrates. Amino acid- and lipid-fueled ketogenesis in the liver, the lipid storage site in elasmobranchs, sustains the demand for ketone bodies as oxidative fuels. The liver also appears to export NEFA and serves a buoyancy role. The regulation of energy metabolism in elasmobranchs and the effects of environmental factors remain poorly understood. The metabolic organization of elasmobranchs was likely present in the common ancestor of the Chondrichthyes ca. 400 million years ago and, speculatively, it may reflect the ancestral metabolism of jawed vertebrates. We assess hypotheses for the evolution of the unusual energy metabolism of elasmobranchs and propose that the need to synthesize urea has influenced the utilization of ketone bodies and amino acids as oxidative fuels.  相似文献   

6.
Few data exist to test the hypothesis that elasmobranchs utilize ketone bodies rather than fatty acids for aerobic metabolism in muscle, especially in continuously swimming, pelagic sharks, which are expected to be more reliant on lipid fuel stores during periods between feeding bouts and due to their high aerobic metabolic rates. Therefore, to provide support for this hypothesis, biochemical indices of lipid metabolism were measured in the slow-twitch, oxidative (red) myotomal muscle, heart, and liver of several active shark species, including the endothermic shortfin mako, Isurus oxyrinchus. Tissues were assayed spectrophotometrically for indicator enzymes of fatty acid oxidation (3-hydroxy-o-acyl-CoA dehydrogenase), ketone-body catabolism (3-oxoacid-CoA transferase), and ketogenesis (hydroxy-methylglutaryl-CoA synthase). Red muscle and heart had high capacities for ketone utilization, low capacities for fatty acid oxidation, and undetectable levels of ketogenic enzymes. Liver demonstrated undetectable activities of ketone catabolic enzymes but high capacities for fatty acid oxidation and ketogenesis. Serum concentrations of the ketone beta-hydroxybutyrate varied interspecifically (means of 0.128-0.978 micromol mL(-1)) but were higher than levels previously reported for teleosts. These results are consistent with the hypothesis that aerobic metabolism in muscle tissue of active sharks utilizes ketone bodies, and not fatty acids, derived from liver lipid stores.  相似文献   

7.
Autophagy is a bulk protein degradation system for the entire organelles and cytoplasmic proteins. Previously, we have shown the liver dysfunction by autophagy deficiency. To examine the pathological effect of autophagy deficiency, we examined protein composition and their levels in autophagy-deficient liver by the proteomic analysis. While impaired autophagy led to an increase in total protein mass, the protein composition was largely unchanged, consistent with non-selective proteins/organelles degradation of autophagy. However, a series of oxidative stress-inducible proteins, including glutathione S-transferase families, protein disulfide isomerase and glucose-regulated proteins were specifically increased in autophagy-deficient liver, probably due to enhanced gene expression, which is induced by accumulation of Nrf2 in the nuclei of mutant hepatocytes. Our results suggest that autophagy deficiency causes oxidative stress, and such stress might be the main cause of liver injury in autophagy-deficient liver.  相似文献   

8.
The relative importance of the main glucogenic and ketogenic substrates, and interactions between fatty acids availability and ketogenesis have been investigated in virgin or 21 day pregnant rats. Fed pregnant rats displayed elevated lactatemia and the production of lactate by portal-drained viscera was markedly reduced. In contrast, the production of alanine and propionate from digestion was almost similar in fed pregnant and virgin rats. The release of glucose by the liver in fed animals was higher in pregnant rats, and lactate was the main glucogenic substrate taken up whereas alanine uptake was reduced. The hepatic utilization of propionate was not different between the two groups of fed animals. Hepatic gluconeogenesis and lactate extraction were enhanced by starvation; the contribution of lactate to glucose release remained higher in pregnant than in virgin rats, whereas the contribution of alanine was lower, owing to its decreased availability in afferent blood. There was a large uptake of intestinally-derived acetate in fed rates, and a slight release, parallel to ketogenesis, was observed in starved pregnant rats. Free fatty acids were elevated and efficiently taken up by the liver in fed pregnant rats, but without any noticeable ketogenesis. Hepatic ketogenesis was enhanced in starved animals, with marked hyperketonaemia in pregnant rats. However, in those animals, the hepatic release of ketone bodies was not proportional to ketonaemia and was almost similar to the release in starved virgin rats.  相似文献   

9.
The purpose of these studies was to determine if the utilization of ketone bodies as a carbon source for lipogenesis could account for the decreased ketone body production by livers of obese Zucker rats, as well as contribute to the enhanced rates of fatty acid synthesis observed in these animals. Ketone body production was decreased from 822 mumol/liver in the lean to 538 mumol/liver in the obese genotype (P less than 0.05). The incorporation of ketone bodies into fatty acids was significantly greater in the obese rat liver (lean, 1.95 mumol of ketone bodies/liver, versus obese, 35.22 mumol/liver; P less than 0.025). The relative contribution of this pathway to the overall rate of fatty acid synthesis was not affected by genotype and accounted for only 3 to 4% of the fatty acids synthesized. The incorporation of ketone bodies into digitonin precipitable sterols was similar in the two genotypes (lean, 4.5 mmol/liver, versus obese 4.7 mumol/liver; NS). This accounted for 9.2 and 6.3% of the total sterol synthesis in lean and obese rat livers, respectively. The total incorporation of ketone bodies into lipid was 7.5 mumols in the lean rat livers and 42.0 mumoles in the obese (P less than 0.025). The net increase was 35 mumoles incorporated, whereas the net decrease in ketogenesis was 284 mumoles. Thus, although ketone body carbon utilization for lipid synthesis was increased in the liver of the obese rats, this pathway could only account for a fraction of the genotypic difference in ketone body production and was of relatively minor importance as a source of carbon for hepatic fatty acid synthesis in both lean and obese rats.  相似文献   

10.
11.
In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G1/G0 in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G2/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G2/M transition and arrest in G1/G0, autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G1/G0 quiescent state.  相似文献   

12.
The importance of ketone bodies (acetoacetate and 3-hydroxybutyrate) as substrates for peripheral tissues, especially nervous tissue, of man is now firmly established. This has renewed interest in the factors that control the production of ketone bodies by the liver in various physiological situations, such as alterations of dietary status, stage of development or alteration in demand for circulating substrates (e.g. in exercise or lactation). In the discussion of the regulation of ketogenesis in the present paper, distinction is made between extrahepatic and intrahepatic control. The former is mainly concerned with the factors (e.g. hormonal status of animals) that alter the flux of non-esterified fatty acids to the liver, whereas intrahepatic regulation involves the fate (esterification versus beta-oxidation) of fatty acids within the liver. Emphasis is placed on the fact that alterations in blood glucose concentrations are indirectly responsible, via effects on insulin secretion, for the extrahepatic control of ketogenesis. By analogy, it is postulated that the carbohydrate status of the liver may play a role in the intrahepatic regulation of ketogenesis. Some support for this postulate is provided by comparison of measurements of blood ketone-body concentrations in various inborn errors of hepatic carbohydrate metabolism (e.g. deficiencies of glucose 6-phosphatase, fructose 1,6-bisphosphatase and glycogen synthase) in man and by experiments with isolated rat hepatocytes. Present information on the short- and long-term factors that may be responsible for the altered rates of ketogenesis during the foetal-neonatal and suckling-weanling transitions, in lactation, on feeding a high-fat diet and post-exercise is discussed. It is concluded that the major factors involved in the regulation of ketogenesis in these situations are (a) flux of non-esterified fatty acids to the liver and (b) the partitioning of long-chain acyl-CoA between the esterification and beta-oxidation pathways.  相似文献   

13.
《Autophagy》2013,9(10):1702-1711
In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G1/G0 in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G2/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G2/M transition and arrest in G1/G0, autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G1/G0 quiescent state.  相似文献   

14.
Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats.  相似文献   

15.
Evidence suggests that the role of autophagy in tumorigenesis is context dependent. Using genetically engineered mouse models (GEMMs) for human non-small-cell lung cancer (NSCLC), we found that deletion of the essential autophagy gene, Atg7, in KRASG12D-driven NSCLC inhibits tumor growth and converts adenomas and adenocarcinomas to benign oncocytomas characterized by the accumulation of respiration-defective mitochondria. Atg7 is required to preserve mitochondrial fatty acid oxidation (FAO) to maintain lipid homeostasis upon additional loss of Trp53 in NSCLC. Furthermore, cell lines derived from autophagy-deficient tumors depend on glutamine to survive starvation. This suggests that autophagy is essential for the metabolism, growth, and fate of NSCLC.  相似文献   

16.
Atg6/Beclin 1 is an evolutionarily conserved protein family that has been shown to function in vacuolar protein sorting (VPS) in yeast; in autophagy in yeast, Drosophila, Dictyostelium, C.elegans, and mammals; and in tumor suppression in mice. Atg6/Beclin 1 is thought to function as a VPS and autophagy protein as part of a complex with Class III phosphatidylinositol 3'-kinase (PI3K)/Vps34. However, nothing is known about which domains of Atg6/Beclin 1 are required for its functional activity and binding to Vps34. We hypothesized that the most highly conserved region of human Beclin 1 spanning from amino acids 244-337 is essential for Vps34 binding, autophagy, and tumor suppressor function. To investigate this hypothesis, we evaluated the effects of wild-type and mutant beclin 1 gene transfer in autophagy-deficient MCF7 human breast carcinoma cells. We found that, unlike wild-type Beclin 1, a Beclin 1 mutant lacking aa 244-337 (Beclin 1DeltaECD), is unable to enhance starvation-induced autophagy in low Beclin 1-expressing MCF7 human breast carcinoma cells. In contrast to wild-type Beclin 1, mutant Beclin 1DeltaECD is unable to immunoprecipitate Vps34, has no Beclin 1-associated Vps34 kinase activity, and lacks tumor suppressor function in an MCF7 scid mouse xenograft tumor model. The maturation of cathepsin D, which requires intact Vps34-dependent VPS function, is comparable in autophagy-deficient low-Beclin 1 expressing MCF7 cells, autophagy-deficient MCF7 cells transfected with Beclin 1DeltaECD, and autophagy-competent MCF7 cells transfected with wild-type Beclin 1. These findings identify an evolutionarily conserved domain of Beclin 1 that is essential for Vps34 interaction, autophagy function, and tumor suppressor function. Furthermore, they suggest a connection between Beclin 1-associated Class III PI3K/Vps34-dependent autophagy, but not VPS, function and the mechanism of Beclin 1 tumor suppressor action in human breast cancer cells.  相似文献   

17.
Cong Yi  Jing-Jing Tong 《Autophagy》2018,14(6):1084-1085
Macroautophagy/autophagy, a process that is highly conserved from yeast to mammals, delivers unwanted cellular contents to lysosomes or the vacuole for degradation. It has been reported that autophagy is crucial for maintaining glucose homeostasis. However, the mechanism by which energy deprivation induces autophagy is not well established. Recently, we found that Mec1/ATR, originally identified as a sensor of DNA damage, is essential for glucose starvation-induced autophagy. Mec1 is recruited to mitochondria where it is phosphorylated by activated Snf1 in response to glucose starvation. Phosphorylation of Mec1 leads to the assembly of a Snf1-Mec1-Atg1 module on mitochondria, which promotes the association of Atg1 with Atg13. Furthermore, we found that mitochondrial respiration is specifically required for glucose starvation-induced autophagy but not autophagy induced by canonical stimuli. The Snf1-Mec1-Atg1 module is essential for maintaining mitochondrial respiration and regulating glucose starvation-induced autophagy.  相似文献   

18.
The metabolic syndrome and the hepatic fatty acid drainage hypothesis   总被引:4,自引:0,他引:4  
Much data indicates that lowering of plasma triglyceride levels by hypolipidemic agents is caused by a shift in the liver metabolism towards activation of peroxisome proliferator activated receptor (PPAR)alpha-regulated fatty acid catabolism in mitochondria. Feeding rats with lipid lowering agents leads to hypolipidemia, possibly by increased channeling of fatty acids to mitochondrial fatty acid oxidation at the expense of triglyceride synthesis. Our hypothesis is that increased hepatic fatty acid oxidation and ketogenesis drain fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects on fat mass accumulation and improved peripheral insulin sensitivity. To investigate this theory we employ modified fatty acids that change the plasma profile from atherogenic to cardioprotective. One of these novel agents, tetradecylthioacetic acid (TTA), is of particular interest due to its beneficial effects on lipid transport and utilization. These hypolipidemic effects are associated with increased fatty acid oxidation and altered energy state parameters of the liver. Experiments in PPAR alpha-null mice have demonstrated that the effects hypolipidemic of TTA cannot be explained by altered PPAR alpha regulation alone. TTA also activates the other PPARs (e.g., PPAR delta) and this might compensate for deficiency of PPAR alpha. Altogether, TTA-mediated clearance of blood triglycerides may result from a lowered level of apo C-III, with a subsequently induction of hepatic lipoprotein lipase activity and (re)uptake of fatty acids from very low density lipoprotein (VLDL). This is associated with an increased hepatic capacity for fatty acid oxidation, causing drainage of fatty acids from the blood stream. This can ultimately be linked to hypolipidemia, anti-adiposity, and improved insulin sensitivity.  相似文献   

19.
Autophagy is thought to be a key mechanism in maintaining the balance of liver lipid metabolism. However, the relationship between apolipoprotein M (ApoM) and autophagy has not been reported, and the role of ApoM in triglyceride metabolism is still unclear. In this study, we investigated the correlation between ApoM and autophagy and liver triglyceride metabolism in ApoM-knockout animal and cellular models. First, we observed that spontaneous hepatic steatosis developed in the liver of adult ApoM?/? mice, which was presented as the accumulation of large quantities of lipid droplets in hepatocytes under electron microscopy; Oil Red O staining showed significant accumulation of triglycerides. At the molecular level, the expression of lipid synthesis-associated proteins (primarily triglyceride synthesis) as well as acetyl-CoA carboxylase alpha (ACACA), fatty acid synthase (FASN) and sterol regulatory element-binding protein 1 (SREBP1) was upregulated. Moreover, lipid metabolic disorder and accumulation were accompanied by dysfunction in autophagy, which displayed predominantly as inhibition of the degradation pathway; for example, P62 protein accumulated and key proteins involved in the initiation of autophagy including ATG7, ATG5-12, Beclin1 and the LC3BII/LC3BI ratio were upregulated as a feedback response. When the autophagy dysfunction was ameliorated by the activation of autophagy pathways induced by starvation, the lipid metabolic disorder was corrected to a certain extent. This suggests that the autophagy dysfunction caused by the deficiency of ApoM is an important factor in hepatic steatosis (triglyceride accumulation). ApoM plays a key role in normal autophagy activity in the liver and thereby further regulates the metabolism of liver lipids, particularly triglycerides.  相似文献   

20.
Hepatic ketogenesis was studied in rats given medium chain triglycerides (MCT). Acetyl-CoA accumulated in the liver, indicating a very rapid beta-oxidation of medium chain fatty acids. Citrate level increases. Ketogenesis is strongly enhanced. Cytoplasm and particularly mitochondria are more reduced after MCT. This may explain the very high increase in hepatic malate. Under our experimental conditions, there appears to be a significant linear relationship between the hepatic acetyl-Coa level and those of total ketone bodies and malade respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号