首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection by the human fungal pathogen Aspergillus fumigatus induces hypoxic microenvironments within the lung that can alter the course of fungal pathogenesis. How hypoxic microenvironments shape the composition and immune activating potential of the fungal cell wall remains undefined. Herein we demonstrate that hypoxic conditions increase the hyphal cell wall thickness and alter its composition particularly by augmenting total and surface-exposed β-glucan content. In addition, hypoxia-induced cell wall alterations increase macrophage and neutrophil responsiveness and antifungal activity as judged by inflammatory cytokine production and ability to induce hyphal damage. We observe that these effects are largely dependent on the mammalian β-glucan receptor dectin-1. In a corticosteroid model of invasive pulmonary aspergillosis, A. fumigatus β-glucan exposure correlates with the presence of hypoxia in situ. Our data suggest that hypoxia-induced fungal cell wall changes influence the activation of innate effector cells at sites of hyphal tissue invasion, which has potential implications for therapeutic outcomes of invasive pulmonary aspergillosis.  相似文献   

2.
Here, we investigated which stress responses were influenced by the MpkC and SakA mitogen‐activated protein kinases of the high‐osmolarity glycerol (HOG) pathway in the fungal pathogen Aspergillus fumigatus. The ΔsakA and the double ΔmpkC ΔsakA mutants were more sensitive to osmotic and oxidative stresses, and to cell wall damaging agents. Both MpkC::GFP and SakA::GFP translocated to the nucleus upon osmotic stress and cell wall damage, with SakA::GFP showing a quicker response. The phosphorylation state of MpkA was determined post exposure to high concentrations of congo red and Sorbitol. In the wild‐type strain, MpkA phosphorylation levels progressively increased in both treatments. In contrast, the ΔsakA mutant had reduced MpkA phosphorylation, and surprisingly, the double ΔmpkC ΔsakA had no detectable MpkA phosphorylation. A. fumigatus ΔsakA and ΔmpkC were virulent in mouse survival experiments, but they had a 40% reduction in fungal burden. In contrast, the ΔmpkC ΔsakA double mutant showed highly attenuated virulence, with approximately 50% mice surviving and a 75% reduction in fungal burden. We propose that both cell wall integrity (CWI) and HOG pathways collaborate, and that MpkC could act by modulating SakA activity upon exposure to several types of stresses and during CW biosynthesis.  相似文献   

3.
Understanding which fungal factors allow colonization and infection of a human host is critical to lowering the incidence of human mycoses and related mortalities. In the pathogen Aspergillus fumigatus, secondary metabolites, small bioactive molecules produced by many opportunistic fungal pathogens, have important roles in suppressing and providing protection from host defenses. Deletion of LaeA, a global regulator of secondary metabolism in fungi, significantly decreases A. fumigatus virulence, in part owing to loss of gliotoxin and hydrophobin production. In addition to gliotoxin, dihydroxynaphthalene (DHN) melanin and siderophores are other A. fumigatus virulence factors; all three metabolites are derived from hallmark secondary metabolite gene clusters. Many of the gene clusters producing toxin metabolites have yet to be deciphered, and the study of secondary metabolites and their role in the virulence of human pathogens is a nascent field.  相似文献   

4.
The cell wall of Aspergillus fumigatus is predominantly composed of polysaccharides. The central fibrillar core of the cell wall is composed of a branched β(1‐3)glucan, to which the chitin and the galactomannan are covalently bound. Softening of the cell wall is an essential event during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosyl hydrolases. In this study, we characterised the role of the glycosyl hydrolase GH55 members in A. fumigatus fungal morphogenesis. We showed that deletion of the six genes of the GH55 family stopped conidial cell wall maturation at the beginning of the development process, leading to abrogation of conidial separation: the shape of conidia became ovoid, and germination was delayed. In conclusion, the reorganisation and structuring of the conidial cell wall mediated by members of the GH55 family is essential for their maturation, normal dissemination, and germination.  相似文献   

5.
The trehalose biosynthesis pathway is critical for virulence in human and plant fungal pathogens. In this study, we tested the hypothesis that trehalose 6‐phosphate phosphatase (T6PP) is required for Aspergillus fumigatus virulence. A mutant of the A. fumigatus T6PP, OrlA, displayed severe morphological defects related to asexual reproduction when grown on glucose (1%) minimal media. These defects could be rescued by addition of osmotic stabilizers, reduction in incubation temperature or increase in glucose levels (> 4%). Subsequent examination of the mutant with cell wall perturbing agents revealed a link between cell wall biosynthesis and trehalose 6‐phosphate (T6P) levels. As expected, high levels of T6P accumulated in the absence of OrlA resulting in depletion of free inorganic phosphate and inhibition of hexokinase activity. Surprisingly, trehalose production persisted in the absence of OrlA. Further analyses revealed that A. fumigatus contains two trehalose phosphorylases that may be responsible for trehalose production in the absence of OrlA. Despite a normal growth rate under in vitro growth conditions, the orlA mutant was virtually avirulent in two distinct murine models of invasive pulmonary aspergillosis. Our results suggest that further study of this pathway will lead to new insights into regulation of fungal cell wall biosynthesis and virulence.  相似文献   

6.

Background  

Aspergillus fumigatus is the most common agent of invasive aspergillosis, a feared complication in severely immunocompromised patients. Despite the recent commercialisation of new antifungal drugs, the prognosis for this infection remains uncertain. Thus, there is a real need to discover new targets for therapy. Particular attention has been paid to the biochemical composition and organisation of the fungal cell wall, because it mediates the host-fungus interplay. Conidia, which are responsible for infections, have melanin as one of the cell wall components. Melanin has been established as an important virulence factor, protecting the fungus against the host's immune defences. We suggested that it might also have an indirect role in virulence, because it is required for correct assembly of the cell wall layers of the conidia.  相似文献   

7.
GPI‐anchoring is a universal and critical post‐translational protein modification in eukaryotes. In fungi, many cell wall proteins are GPI‐anchored, and disruption of GPI‐anchored proteins impairs cell wall integrity. After being synthesized and attached to target proteins, GPI anchors undergo modification on lipid moieties. In spite of its importance for GPI‐anchored protein functions, our current knowledge of GPI lipid remodelling in pathogenic fungi is limited. In this study, we characterized the role of a putative GPI lipid remodelling protein, designated PerA, in the human pathogenic fungus Aspergillus fumigatus. PerA localizes to the endoplasmic reticulum and loss of PerA leads to striking defects in cell wall integrity. A perA null mutant has decreased conidia production, increased susceptibility to triazole antifungal drugs, and is avirulent in a murine model of invasive pulmonary aspergillosis. Interestingly, loss of PerA increases exposure of β‐glucan and chitin content on the hyphal cell surface, but diminished TNF production by bone marrow‐derived macrophages relative to wild type. Given the structural specificity of fungal GPI‐anchors, which is different from humans, understanding GPI lipid remodelling and PerA function in A. fumigatus is a promising research direction to uncover a new fungal specific antifungal drug target.  相似文献   

8.
Simple and effective protocols of cell wall disruption were elaborated for tested fungal strains: Penicillium citrinum, Aspergillus fumigatus, Rhodotorula gracilis. Several techniques of cell wall disintegration were studied, including ultrasound disintegration, homogenization in bead mill, application of chemicals of various types, and osmotic shock. The release of proteins from fungal cells and the activity of a cytosolic enzyme, glucose-6-phosphate dehydrogenase, in the crude extracts were assayed to determine and compare the efficacy of each method. The presented studies allowed adjusting the particular method to a particular strain. The mechanical methods of disintegration appeared to be the most effective for the disintegration of yeast, R. gracilis, and filamentous fungi, A. fumigatus and P. citrinum. Ultrasonication and bead milling led to obtaining fungal cell-free extracts containing high concentrations of soluble proteins and active glucose-6-phosphate dehydrogenase systems.  相似文献   

9.
10.
The greater wax moth Galleria mellonella has been widely used as a heterologous host for a number of fungal pathogens including Candida albicans and Cryptococcus neoformans. A positive correlation in pathogenicity of these yeasts in this insect model and animal models has been observed. However, very few studies have evaluated the possibility of applying this heterologous insect model to investigate virulence traits of the filamentous fungal pathogen Aspergillus fumigatus, the leading cause of invasive aspergillosis. Here, we have examined the impact of mutations in genes involved in melanin biosynthesis on the pathogenicity of A. fumigatus in the G. mellonella model. Melanization in A. fumigatus confers bluish-grey color to conidia and is a known virulence factor in mammal models. Surprisingly, conidial color mutants in B5233 background that have deletions in the defined six-gene cluster required for DHN-melanin biosynthesis caused enhanced insect mortality compared to the parent strain. To further examine and confirm the relationship between melanization defects and enhanced virulence in the wax moth model, we performed random insertional mutagenesis in the Af293 genetic background to isolate mutants producing altered conidia colors. Strains producing conidia of previously identified colors and of novel colors were isolated. Interestingly, these color mutants displayed a higher level of pathogenicity in the insect model compared to the wild type. Although some of the more virulent color mutants showed increased resistance to hydrogen peroxide, overall phenotypic characterizations including secondary metabolite production, metalloproteinase activity, and germination rate did not reveal a general mechanism accountable for the enhanced virulence of these color mutants observed in the insect model. Our observations indicate instead, that exacerbated immune response of the wax moth induced by increased exposure of PAMPs (pathogen-associated molecular patterns) may cause self-damage that results in increased mortality of larvae infected with the color mutants. The current study underscores the limitations of using this insect model for inferring the pathogenic potential of A. fumigatus strains in mammals, but also points to the importance of understanding the innate immunity of the insect host in providing insights into the pathogenicity level of different fungal strains in this model. Additionally, our observations that melanization defective color mutants demonstrate increased virulence in the insect wax moth, suggest the potential of using melanization defective mutants of native insect fungal pathogens in the biological control of insect populations.  相似文献   

11.
韩琦  王铌翔 《微生物学报》2024,64(1):98-107
抑制真菌细胞壁的合成常作为防治真菌感染的安全有效手段。几丁质是真菌细胞壁及隔膜的重要结构成分,几丁质合酶是催化几丁质合成的关键酶。真菌细胞中几丁质合酶家族的不同成员在调控几丁质的合成中存在着差异,因此产生不同的生物学效应。本文通过综述几丁质合酶在人体三大条件致病真菌白色念珠菌、烟曲霉、新生隐球菌中的研究进展,分析了几丁质合酶对真菌致病性影响的机制,总结了几丁质合酶调控真菌细胞增殖、形态转换、病原菌与宿主的相互作用和细胞壁损伤诱导的补偿效应,展望了抗真菌感染的新策略及关于真菌几丁质合酶的未来研究方向。  相似文献   

12.
13.
Septins, a conserved family of GTPases, are heteropolymeric filament-forming proteins that associate with the cell membrane and cytoskeleton and serve essential functions in cell division and morphogenesis. Their roles in fungal cell wall chitin deposition, septation, cytokinesis, and sporulation have been well established and they have recently been implicated in tissue invasion and virulence in Candida albicans. Septins have never been investigated in the human pathogenic fungus, Aspergillus fumigatus, which is a leading cause of death in immunocompromised patients. Here we localize all the five septins (AspA–E) from A. fumigatus for the first time, and show that each of the five septins exhibit varied patterns of distribution. Interestingly AspE, which is unique to filamentous fungi, and AspD, belonging to the CDC10 class of septins, localized prominently to tubular structures which were dependent on actin and microtubule networks. Localization of AspD and AspE has never been reported in filamentous fungi. Taken together these results suggest that septins in A. fumigatus might have unique functions in morphogenesis and pathogenicity.  相似文献   

14.
Although the plasma membrane is the terminal destination for glycosylphosphatidylinositol (GPI) proteins in higher eukaryotes, cell wall-attached GPI proteins (GPI-CWPs) are found in many fungal species. In yeast, some of the cis-requirements directing localization of GPI proteins to the plasma membrane or cell wall are now understood. However, it remains to be determined how Aspergillus fumigatus, an opportunistic fungal pathogen, signals, and sorts GPI proteins to either the plasma membrane or the cell wall. In this study, chimeric green fluorescent proteins (GFPs) were constructed as fusions with putative C-terminal GPI signal sequences from A. fumigatus Mp1p, Gel1p, and Ecm33p, as well as site-directed mutations thereof. By analyzing cellular localization of chimeric GFPs using Western blotting, electron microscopy, and fluorescence microscopy, we showed that, in contrast to yeast, a single Lys residue at the ω-1 or ω-2 site alone could retain GPI-anchored GFP in the plasma membrane. Although the signal for cell wall distribution has not been identified yet, it appeared that the threonine/serine-rich region at the C-terminal half of AfMp1 was not required for cell wall distribution. Based on our results, the cis-requirements directing localization of GPI proteins in A. fumigatus are different from those in yeast.  相似文献   

15.
The sugar nucleotide UDP‐N‐acetylglucosamine (UDP‐GlcNAc) is an essential metabolite in both prokaryotes and eukaryotes. In fungi, it is the precursor for the synthesis of chitin, an essential component of the fungal cell wall. U DP‐N‐a cetylglucosamine p yrophosphorylase (UAP) is the final enzyme in eukaryotic UDP‐GlcNAc biosynthesis, converting UTP and N‐acetylglucosamine‐1‐phosphate (GlcNAc‐1P) to UDP‐GlcNAc. As such, this enzyme may provide an attractive target against pathogenic fungi. Here, we demonstrate that the fungal pathogen Aspergillus fumigatus possesses an active UAP (AfUAP1) that shows selectivity for GlcNAc‐1P as the phosphosugar substrate. A conditional mutant, constructed by replacing the native promoter of the A. fumigatus uap1 gene with the Aspergillus nidulans alcA promoter, revealed that uap1 is essential for cell survival and important for cell wall synthesis and morphogenesis. The crystal structure of AfUAP1 was determined and revealed exploitable differences in the active site compared with the human enzyme. Thus AfUAP1 could represent a novel antifungal target and this work will assist the future discovery of small molecule inhibitors against this enzyme.  相似文献   

16.
If the mycelium of Aspergillus fumigatus is very short‐lived in the laboratory, conidia can survive for years. This survival capacity and extreme resistance to environmental insults is a major biological characteristic of this fungal species. Moreover, conidia, which easily reach the host alveola, are the infective propagules. Earlier studies have shown the role of some molecules of the outer conidial layer in protecting the fungus against the host defense. The outer layer of the conidial cell wall, directly in contact with the host cells, consists of α‐(1,3)‐glucan, melanin, and proteinaceous rodlets. This study is focused on the global importance of this outer layer. Single and multiple mutants without one to three major components of the outer layer were constructed and studied. The results showed that the absence of the target molecules resulting from multiple gene deletions led to unexpected phenotypes without any logical additivity. Unexpected compensatory cell wall surface modifications were indeed observed, such as the synthesis of the mycelial virulence factor galactosaminogalactan, the increase in chitin and glycoprotein concentration or particular changes in permeability. However, sensitivity of the multiple mutants to killing by phagocytic host cells confirmed the major importance of melanin in protecting conidia.  相似文献   

17.
Recent studies on aspergillosis in turkey poults   总被引:3,自引:0,他引:3  
A review of the studies on aspergillosis in turkey poults at the National Animal Disease Center include limited field studies, pathogenicity studies, and vaccine development. Natural ventilation in turkey rearing houses was effective in reducing airborne propagules of four major fungal genera, but the effectiveness of ventilation appeared to be limited by the width of the building. Aspergillus fumigatus was more effective than A. flavus in producing mortalities in aerosol exposed poults. Toxigenicity of A. flavus did not enhance its pathogenicity, and no apparent aflatoxin production occurred during pathogenesis in infected turkey poults. Spores of A. fumigatus were disseminated quite rapidly in poults exposed to aerosols, and alveolar macrophages from respiratory lavages taken immediately after exposure contained spores of A. fumigatus. Vaccines produced from germlings of A. fumigatus and administered to turkey poults were the most efficacious of five vaccines tested against challenge exposure to aerosols of A. fumigatus spores.  相似文献   

18.
19.
Size and diverse morphologies pose a primary challenge for phagocytes such as innate immune cells and predatory amoebae when encountering fungal prey. Although filamentous fungi can escape phagocytic killing by pure physical constraints, unicellular spores and yeasts can mask molecular surface patterns or arrest phagocytic processing. Here, we show that the fungivorous amoeba Protostelium aurantium was able to adjust its killing and feeding mechanisms to these different cell shapes. Yeast-like fungi from the major fungal groups of basidiomycetes and ascomycetes were readily internalized by phagocytosis, except for the human pathogen Candida albicans whose mannoprotein coat was essential to escape recognition by the amoeba. Dormant spores of the filamentous fungus Aspergillus fumigatus also remained unrecognized, but swelling and the onset of germination induced internalization and intracellular killing by the amoeba. Mature hyphae of A. fumigatus were mostly attacked from the hyphal tip and killed by an actin-mediated invasion of fungal filaments. Our results demonstrate that predatory pressure imposed by amoebae in natural environments selects for distinct survival strategies in yeast and filamentous fungi but commonly targets the fungal cell wall as a crucial molecular pattern associated to prey and pathogens.  相似文献   

20.
烟曲霉(Aspergillus fumigatus)是一种分布于世界各地的腐生真菌,属于人类临床常见的三大机会性致病真菌之一,是侵袭性曲霉菌病的主要病原菌。烟曲霉可以产生DHN-黑色素(dihydroxynaphthalene melanin)和脓黑素(pyomelanin)这2种类型黑色素。本综述介绍烟曲霉黑色素产生的遗传代谢途径、功能以及与宿主免疫系统相互作用的最新认识,有助于更好地理解烟曲霉的病理生理特征,为烟曲霉感染快速诊断技术和新型抗真菌药物的研发提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号