首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysosomes degrade macromolecules such as proteins and nucleic acids. We previously identified 2 novel types of autophagy, RNautophagy and DNautophagy, where lysosomes directly take up RNA and DNA, in an ATP-dependent manner, for degradation. We have also reported that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference defective-1), mediates RNA translocation during RNautophagy. In this addendum, we report that SIDT2 also mediates DNA translocation in the process of DNautophagy. These findings help elucidate the mechanisms underlying the direct uptake of nucleic acids by lysosomes and the physiological functions of DNautophagy.  相似文献   

2.
Regulated degradation of cellular components by lysosomes is essential to maintain biological homeostasis. In mammals, three forms of autophagy, macroautophagy, microautophagy and chaperone-mediated autophagy (CMA), have been identified. Here, we showed a novel type of autophagy, in which RNA is taken up directly into lysosomes for degradation. This pathway, which we term “RNautophagy,” is ATP-dependent, and unlike CMA, is independent of HSPA8/Hsc70. LAMP2C, a lysosomal membrane protein, serves as a receptor for this pathway. The cytosolic tail of LAMP2C specifically binds to almost all total RNA derived from mouse brain. The cytosolic sequence of LAMP2C and its affinity for RNA are evolutionarily conserved from nematodes to humans. Our findings shed light on the mechanisms underlying RNA homeostasis in higher eukaryotes.  相似文献   

3.
Lysosomes contain various hydrolases that can degrade proteins, lipids, nucleic acids and carbohydrates. We recently discovered “RNautophagy,” an autophagic pathway in which RNA is directly taken up by lysosomes and degraded. A lysosomal membrane protein, LAMP2C, a splice variant of LAMP2, binds to RNA and acts as a receptor for this pathway. In the present study, we show that DNA is also directly taken up by lysosomes and degraded. Like RNautophagy, this autophagic pathway, which we term “DNautophagy,” is dependent on ATP. The cytosolic sequence of LAMP2C also directly interacts with DNA, and LAMP2C functions as a receptor for DNautophagy, in addition to RNautophagy. Similarly to RNA, DNA binds to the cytosolic sequences of fly and nematode LAMP orthologs. Together with the findings of our previous study, our present findings suggest that RNautophagy and DNautophagy are evolutionarily conserved systems in Metazoa.  相似文献   

4.
5.
6.
Macroautophagy (autophagy) is a multistep intracellular degradation system. Autophagosomes form, mature, and ultimately fuse with lysosomes, where their sequestered cargo molecules are digested. In contrast to autophagosome formation, our knowledge of autophagosome-lysosome fusion is limited. In a recent study, we identified a novel regulator of autophagy, INPP5E (inositol polyphosphate-5-phosphatase E), which is essential for autophagosome-lysosome fusion. INPP5E primarily functions in neuronal cells, and knockdown of the corresponding gene causes accumulation of autophagosomes by impairing fusion with lysosomes. Some INPP5E molecules localize at the lysosome, and both lysosomal localization and INPP5E enzymatic activity are crucial for autophagy. In addition, INPP5E decreases PtdIns(3,5)P2 levels on lysosomes, leading to activation of CTTN (cortactin) and stabilization of actin filaments, which are also essential for autophagosome-lysosome fusion. Mutations in INPP5E are causative for Joubert syndrome, a rare brain abnormality, and our results indicate that defects in autophagy play a critical role in pathogenesis.  相似文献   

7.
8.
Past evidence has suggested that the lysosomal pathway is an important site of cytoplasmic RNA degradation in the hepatic parenchymal cell (Lardeux, B. R., Heydrick, S. J., and Mortimore, G. E. (1987) J. Biol. Chem. 262, 14507-14519). We now provide additional support for this notion by quantitating degradable RNA in lysosomes and correlating its pool size with hepatic RNA degradation. Rat livers, previously labeled with [6-14C]orotic acid, were perfused with graded levels of amino acids over the full range of induced autophagy; RNA degradation was determined from [14C]cytidine release. Close correspondence between the marker beta-acetylglucosaminidase and the breakdown of RNA to cytidine in subcellular fractions indicated that the lysosome was the main site of catabolism, a conclusion supported by the fact that degradation was enhanced when external pH was lowered from 7 to 6. Although [14C]cytidine was also released in homogenates by the action of natural ribonucleases on cytosolic RNA, this source was eliminated by unlabeled exogenous RNA. The size of the degradable RNA pool in lysosomes, determined from the total release of cytidine in homogenates, correlated directly with rates of hepatic RNA degradation over the full range of basal and induced degradation. A direct correlation was also seen between RNA degradation and cytidine pools within lysosomal particles. Because cytosolic cytidine was not taken up by lysosomes under these conditions, the pool could only have arisen from the breakdown of intralysosomal RNA. As determined by cytidine production, these findings support the view that the lysosomal-vacuolar system is the main, if not sole, site of induced and basal RNA degradation in liver.  相似文献   

9.
Autophagy is a lysosome-dependent degradative pathway that regulates the turnover of intracellular organelles, parasites, and long-lived proteins. Deregulation of autophagy results in a variety of pathological conditions, but little is known regarding the mechanisms that link normal cellular and pathological signals to the regulation of distinct stages in the autophagy pathway. Here we uncover a novel role for the Abl family kinases in the regulation of the late stages of autophagy. Inhibition, depletion, or knockout of the Abl family kinases, Abl and Arg, resulted in a dramatic reduction in the intracellular activities of the lysosomal glycosidases alpha-galactosidase, alpha-mannosidase and neuraminidase. Inhibition of Abl kinases also reduced the processing of the precursor forms of cathepsin D and cathepsin L to their mature, lysosomal forms, which coincided with the impaired turnover of long-lived cytosolic proteins and accumulation of autophagosomes. Furthermore, defective lysosomal degradation of long-lived proteins in the absence of Abl kinase signaling was accompanied by a perinuclear redistribution of lysosomes and increased glycosylation and stability of lysosome-associated membrane proteins, which are known to be substrates for lysosomal enzymes and play a role in regulating lysosome mobility. Our findings reveal a role for Abl kinases in the regulation of late-stage autophagy and have important implications for therapies that employ pharmacological inhibitors of the Abl kinases.  相似文献   

10.
Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L ‐Leucyl‐L‐leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy‐dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis.  相似文献   

11.
Lysosomes, a central regulator of autophagy, play a critical role in tumour growth. Lysosomal protease cathepsin D can initiate apoptosis when released from lysosomes into the cytosol. In this study, we observed that Musca domestica cecropin (Mdc) 1–8 (M1-8), a small anti-tumour peptide derived from Mdc, inhibits hepatoma cell growth by blocking autophagy–lysosome fusion. This effect is likely achieved by targeting lysosomes to activate lysosomal protease D. Additionally, we examined whether lysosomal content and cathepsin D release were involved in M1-8-induced apoptosis. After exposure to M1-8, human hepatoma HepG2 cells rapidly co-localized with lysosomes, disrupted lysosomal integrity, caused leakage of lysosomal protease cathepsin D, caspase activation and mitochondrial membrane potential changes; and promoted cell apoptosis. Interestingly, in M1-8-treated HepG2 cells, autophagic protein content increased and the lysosome–autophagosome fusion was inhibited, suggesting that M1-8 can cause apoptosis through autophagy and lysosomes. This result indicates that a small accumulation of autophagy and autolysosome inhibition in cells can cause cell death. Taken together, these data suggest a novel insight into the regulatory mechanisms of M1-8 in autophagy and lysosomes, which may facilitate the development of M1-8 as a potential cancer therapeutic agent.  相似文献   

12.
13.
During systemic RNA interference (RNAi) in Caenorhabditis elegans, RNA spreads across different cells and tissues in a process that requires the systemic RNA interference deficient-1 (sid-1) gene, which encodes an integral membrane protein. SID-1 acts cell-autonomously and is required for cellular import of interfering RNAs. Heterologous expression of SID-1 in Drosophila Schneider 2 cells enables passive uptake of dsRNA and subsequent soaking RNAi. Previous studies have suggested that SID-1 may serve as an RNA channel, but its precise molecular role remains unclear. To test the hypothesis that SID-1 mediates a direct biochemical recognition of RNA molecule and subsequent permeation, we expressed the extracellular domain (ECD) of SID-1 and purified it to near homogeneity. Recombinant purified SID-1 ECD selectively binds dsRNA but not dsDNA in a length-dependent and sequence-independent manner. Genetic missense mutations in SID-1 ECD causal for deficient systemic RNAi resulted in significant reduction in its affinity for dsRNA. Furthermore, full-length proteins with these mutations decrease SID-1-mediated RNA transport efficiency, providing evidence that dsRNA binding to SID-1 ECD is related to RNA transport. To examine the functional similarity of mammalian homologs of SID-1 (SIDT1 and SIDT2), we expressed and purified mouse SIDT1 and SIDT2 ECDs. We show that they bind long dsRNA in vitro, supportive of dsRNA recognition. In summary, our study illustrates the functional importance of SID-1 ECD as a dsRNA binding domain that contributes to RNA transport.  相似文献   

14.
Lysosomes can degrade various biological macromolecules, including nucleic acids, proteins and lipids. Recently, we identified novel nucleic acid-degradation systems termed RNautophagy/DNautophagy (abbreviated as RDA), in which RNA and DNA are directly taken up by lysosomes in an ATP-dependent manner and degraded. We also found that a lysosomal membrane protein, LAMP2C, the cytoplasmic region of which binds to RNA and DNA, functions, at least in part, as an RNA/DNA receptor in the process of RDA. However, it has been unclear whether RDA possesses selectivity for RNA/DNA substrates and the RNA/DNA sequences that are recognized by LAMP2C have not been determined. In the present study, we found that the cytosolic region of LAMP2C binds to poly-G/dG, but not to poly-A/dA, poly-C/dC, poly-dT or poly-U. Consistent with this binding activity, poly-G/dG was transported into isolated lysosomes via RDA, while poly-A/dA, poly-C/dC, poly-dT and poly-U were not. GGGGGG or d(GGGG) sequences are essential for the interaction between poly-G/dG and LAMP2C. In addition to poly-G/dG, G/dG-rich sequences, such as a repeated GGGGCC sequence, interacted with the cytosolic region of LAMP2C. Our findings indicate that RDA does possess selectivity for RNA/DNA substrates and that at least some consecutive G/dG sequence(s) can mediate RDA.  相似文献   

15.
Lysosomes are the site of degradation of obsolete intracellular material during autophagy and of extracellular macromolecules following endocytosis and phagocytosis. The membrane of lysosomes and late endosomes is enriched in highly glycosylated transmembrane proteins of largely unknown function. Significant progress has been made in recent years towards elucidating the pathways by which these lysosomal membrane proteins are delivered to late endosomes and lysosomes. While some lysosomal membrane proteins follow the constitutive secretory pathway and reach lysosomes indirectly via the cell surface and endocytosis, others exit the trans-Golgi network in clathrin-coated vesicles for direct delivery to endosomes and lysosomes. Sorting from the Golgi or the plasma membrane into the endosomal system is mediated by signals encoded by the short cytosolic domain of these proteins. This review will discuss the role of lysosomal membrane proteins in the biogenesis of the late endosomal and lysosomal membranes, with particular emphasis on the structural features and molecular mechanisms underlying the intracellular trafficking of these proteins.  相似文献   

16.
17.
18.
《Autophagy》2013,9(8):1472-1473
We have recently shown the roles of an autophagy gene in the regulation of metabolism and metabolic diseases. We identified Becn2/Beclin 2, a novel mammalian specific homolog of Becn1/Beclin 1, characterized the functions of the gene product in autophagy and agonist-induced lysosome-mediated downregulation of a subset of G protein-coupled receptors (GPCRs), and proposed a model of dual functions of BECN2 in these 2 lysosomal degradation pathways. Further analyses revealed that knockout of Becn2 dramatically decreases embryonic survival in homozygotes, and leads to metabolic dysregulation in heterozygotes, which is likely caused by disruption of GPCR signaling. This finding suggests that besides autophagy, BECN/Beclin family members may play a role in the regulation of a broader spectrum of intracellular signaling pathways.  相似文献   

19.
Macroautophagy/autophagy is a conserved transport pathway where targeted structures are sequestered by phagophores, which mature into autophagosomes, and then delivered into lysosomes for degradation. Autophagy is involved in the pathophysiology of numerous diseases and its modulation is beneficial for the outcome of numerous specific diseases. Several lysosomal inhibitors such as bafilomycin A1 (BafA1), protease inhibitors and chloroquine (CQ), have been used interchangeably to block autophagy in in vitro experiments assuming that they all primarily block lysosomal degradation. Among them, only CQ and its derivate hydroxychloroquine (HCQ) are FDA-approved drugs and are thus currently the principal compounds used in clinical trials aimed to treat tumors through autophagy inhibition. However, the precise mechanism of how CQ blocks autophagy remains to be firmly demonstrated. In this study, we focus on how CQ inhibits autophagy and directly compare its effects to those of BafA1. We show that CQ mainly inhibits autophagy by impairing autophagosome fusion with lysosomes rather than by affecting the acidity and/or degradative activity of this organelle. Furthermore, CQ induces an autophagy-independent severe disorganization of the Golgi and endo-lysosomal systems, which might contribute to the fusion impairment. Strikingly, HCQ-treated mice also show a Golgi disorganization in kidney and intestinal tissues. Altogether, our data reveal that CQ and HCQ are not bona fide surrogates for other types of late stage lysosomal inhibitors for in vivo experiments. Moreover, the multiple cellular alterations caused by CQ and HCQ call for caution when interpreting results obtained by blocking autophagy with this drug.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号