首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A capacitive sensor for environmental monitoring based on thin films of desmetryn-selective molecularly imprinted polymer (MIP) was developed. The method of modification of gold electrodes with the thin film of herbicide-selective MIP using the grafting polymerization approach was developed. The method of computational modeling was used to optimize the composition of desmetryn-selective MIPs. It was shown that 2-acrylamido-2-methyl-1-propan-sulfonic acid is the optimal functional monomer for desmetryn. Formation of synthetic binding sites in MIPs was demonstrated to be determined by the binding energy between the template and functional monomers as well as the number of functional groups taking part in the recognition of the template molecule. Electrochemical processes occurring at the MIP-modified electrode were analyzed. The detection limit for desmetryn comprised 100 nM. High selectivity of the capacitive sensor towards structural analogues of desmetryn as well as high operational and storage stabilities was demonstrated.  相似文献   

2.
A molecularly imprinted electrochemical sensor was fabricated based on gold electrode decorated by chitosan-platinum nanoparticles (CS-PtNPs) and graphene-gold nanoparticles (GR-AuNPs) nanocomposites for convenient and sensitive determination of erythromycin. The synergistic effects of CS-PtNPs and GR-AuNPs nanocomposites improved the electrochemical response and the sensitivity of the sensor. The molecularly imprinted polymers (MIPs) were prepared by HAuCl(4), 2-mercaptonicotinic acid (MNA) and erythromycin. Erythromycin and MNA were used as template molecule and functional monomer, respectively. They were first assembled on the surface of GR-AuNPs/CS-PtNPs/gold electrode by the formation of Au-S bonds and hydrogen-bonding interactions. Then the MIPs were formed by electropolymerization of HAuCl(4), MNA and erythromycin. The sensor was characterized by cyclic voltammetry (CV), scanning electron microscope (SEM), UV-visible (UV-vis) absorption speactra and amperometry. The linear range of the sensor was from 7.0×10(-8)mol/L-9.0×10(-5)mol/L, with the limit of detection (LOD) of 2.3×10(-8)mol/L (S/N=3). The sensor showed high selectivity, excellent stability and good reproducibility for the determination of erythromycin, and it was successfully applied to the detection of erythromycin in real spiked samples.  相似文献   

3.
A voltammetric sensor for (-)-ephedrine has been prepared by a novel approach based on immobilisation of an imprinted polymer for ephedrine (MIPE) in an electrosynthesised polypyrrole (PPY) film. Composite films were grown potentiostatically at 1.0 V vs. Pt (QRE) on a glassy carbon electrode using an unconventional "upside-down" (UD) geometry for the three-electrode cell. As a consequence, a high MIP loading was obtained, as revealed by SEM. The sensor response was evaluated, after overoxidation of PPY matrix, by cyclic voltammetry after pre-concentration in a buffered solution of analyte in 0.5-3 mM concentration range. An ephedrine peak at approximately 0.9 V increasing with concentration and saturating at high concentrations was evident. PPY-modified electrode showed a response, which was distinctly lower than the MIP response for the same concentration of the template. The effect of potential interferences including compounds usually found in human fluids (ascorbic acid, uric acid, urea, glucose, sorbitol, glycine, dopamine) was examined.  相似文献   

4.
An imprinted electrochemical sensor based on polypyrrole-sulfonated graphene (PPy-SG)/hyaluronic acid-multiwalled carbon nanotubes (HA-MWCNTs) for sensitive detection of tryptamine was presented. Molecularly imprinted polymers (MIPs) were synthesized by electropolymerization using tryptamine as the template, and para-aminobenzoic acid (pABA) as the monomer. The surface feature of the modified electrode was characterized by cyclic voltammetry (CV). The proposed sensor was tested by chronoamperometry. Several important parameters controlling the performance of the molecularly imprinted sensor were investigated and optimized. The results showed that the PPy-SG composites films showed improved conductivity and electrochemical performances. HA-MWCNTs bionanocomposites could enhance the current response evidently. The good selectivity of the sensor allowed three discriminations of tryptamine from interferents, which include tyramine, dopamine and tryptophan. Under the optimal conditions, a linear ranging from 9.0×10(-8) mol L(-1) to 7.0×10(-5) mol L(-1) for the detection of tryptamine was observed with the detection limit of 7.4×10(-8) mol L(-1) (S/N=3). This imprinted electrochemical sensor was successfully employed to detect tryptamine in real samples.  相似文献   

5.
A novel composite of graphene sheets/Congo red-molecular imprinted polymers (GSCR-MIPs) was synthesized through free radical polymerization (FRP) and applied as a molecular recognition element to construct dopamine (DA) electrochemical sensor. The template molecules (DA) were firstly absorbed at the GSCR surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) was further achieved at the GSCR surface. Potential scanning was presented to extract DA molecules from the imprinted polymers film, and as a result, DA could be rapidly and completely removed by this way. With regard to the traditional MIPs, the GSCR-MIPs not only possessed a faster desorption and adsorption dynamics, but also exhibited a higher selectivity and binding capacity toward DA molecule. As a consequence, an electrochemical sensor for highly sensitive and selective detection of DA was successfully constructed as demonstration based on the synthesized GSCR-MIPs nanocomposites. Under experimental conditions, selective detection of DA in a linear concentration range of 1.0 × 10(-7)-8.3 × 10(-4)M was obtained, which revealed a lower limit of detection and wider linear response compared to some previously reported DA electrochemical MIPs sensors. The new DA electrochemical sensor based on GSCR-MIPs composites also exhibited excellent repeatability, which expressed as relative standard deviation (RSD) was about 2.50% for 30 repeated analyses of 20 μM DA.  相似文献   

6.
Protein-responsive imprinted polymers with specific shrinking and rebinding   总被引:1,自引:0,他引:1  
Stimuli-responsive protein imprinted polymers were obtained via a combination of molecular imprinting and reversible stimuli-responsive polymer using lysozyme or cytochrome c as template, N-isopropylacrylamide (NIPA) as major monomer, methacrylic acid (MAA) and acrylamide (AAm) as functional co-monomers, and N,N-methylenebisacrylamide (MBAAm) as crosslinker. The molecularly imprinted polymers (MIPs) can respond not only to external stimuli such as temperature and salt concentration, but also to the corresponding template protein with significant specific volume shrinking. This specific shrinking behavior was attributed to the synergistic effect of multiple-site weak interactions (electrostatic force, hydrogen bonding and hydrophobic interaction) and the cavity effect. The MIPs showed highly selective adsorption of template proteins with specific shrinking compared with the non-imprinted polymers. The results indicated that the MIPs seemed to change shape to accommodate the conformation of the template protein leading to the formation of a shape complementary cavity.  相似文献   

7.
A quartz crystal nanobalance (QCN) biosensor was developed for the selective determination of phenylalanine (Phe) in aqueous solutions. A Phe imprinted copolymer was synthesized using polyacrylonitrile and acrylic acid [poly(AN-co-AA)]. The copolymer was then coated on quartz crystal electrode to form complementary structures for the template recognition of Phe. The composite electrode was then used to determine Phe levels in solution. Determinations were based on frequency shifts of molecularly imprinted polymer (MIP) modified quartz crystal electrode caused by Phe adsorption. The frequency shifts were linearly dependent on Phe concentration over the range 50∼500 mgL−1. The results obtained show that the imprinted poly(AN-co-AA) modified biosensor had higher sensitivity (0.5839 Hz/mgL−1) than a non-molecularly imprinted copolymer (0.2724 Hz/mgL−1). Furthermore, good reproducibility, R.S.D. = 1.84% (n = 7) was observed, and the detection limit was 45 mgL−1. The selectivity of the imprinted poly(AN-co-AA) modified biosensor was examined using a number of analytes similar to Phe, i.e., dopamine (DA), ascorbic acid (AscA), vanillylmandelic acid (VMA), uric acid (UA), tryptophan (Trp), and tyrosine (Tyr), and the results obtained showed a size dependent selective effect.  相似文献   

8.
An amperometric sequence-specific molecularly imprinted single-stranded oligodeoxyribonucleotide (ss-ODN) biosensor was fabricated and characterised in this study. Using ss-ODN as the template and o-phenylenediamine as the functional monomer, the ODN biosensor was fabricated by an electropolymerisation process on an indium-tin oxide (ITO) coated glass substrate. The template ss-ODN was washed out of the ss-ODN/poly(o-phenylenediamine)(PoPD)/ITO electrode using sterilised basic ethanol-water. The resulting ss-ODN imprinted PoPD/ITO electrode was characterised using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). The amperometric responses, i.e., Δi as a function of the target ss-ODN concentration was studied. The biosensor using ss-ODN imprinted PoPD/ITO as the working electrode showed a linear Δ current response to the target ss-ODN concentration within the range of 0.01-300 fM. The biosensor showed a sensitivity of 0.62 μA/fM, with a response time of 14s. The present novel molecularly imprinted ss-ODN biosensor could greatly benefit in terms of cost-effectiveness, storage stability, ultra sensitivity and selectivity together with the potential for improved commercial genetic sensors.  相似文献   

9.
Molecular imprinted polymers (MIPs) binding with phenoxyacetic acid (PA) as a dummy template molecule were synthesized via thermal initiation in aqueous medium. The retention behaviors of benzoic acid (BA), PA, 2-methyl-4-chlorophenoxyacetic acid (MCPA), 4-chlorophenoxyacetic acid (4-CPA), and 2,4-dichlorophenoxyacetic acid (2,4-D) on this MIP column indicate that this material can selectively retain phenoxyacetic herbicides. To investigate these recognition mechanisms, the interactions between the functional monomer 4-vinylpyridine (4-VP) and PA or 2,4-D were investigated by computational modeling. (1)H NMR spectroscopy of 2,4-D titrated by 4-VP was recorded. The chemical shift of the 2,4-D acidic proton (12.15-14.32ppm) shows the existence of the ion-pair interaction. This kind of polymers could be useful as stationary phases to extract 2,4-D, 4-CPA or MCPA and avoid leakage of a trace amount of target analyte remaining in the MIPs.  相似文献   

10.
分子印迹技术应用于血清中地高辛的快速检测   总被引:1,自引:0,他引:1  
应用分子印迹的方法制备对地高辛有特异性吸附性能的印迹聚合物颗粒,再将颗粒与琼脂糖混合并固定于玻碳电极上制备成地高辛分子印迹聚合膜传感器,传感器可以特异性地结合模板分子地高辛且其电化学信号与模板浓度相关,再用它来检测血清中地高辛的含量。结果表明:分子印迹传感器具有制作简便、成本低、检测快速、特异性高、稳定性好等优点,检测下限为1.28 nmol/L,检测时间为5 min。  相似文献   

11.
Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quartz crystal microbalance (QCM) sensor crystals by coating the sensing surfaces with pre-made molecularly imprinted nanoparticles. The nanoparticles were immobilized on the QCM transducers by physical entrapment in a thin poly(ethylene terephthalate) (PET) layer that was spin-coated on the transducer surface. By controlling the deposition conditions, it was possible to gain a high nanoparticle loading in a stable PET layer, allowing the recognition sites in nanoparticles to be easily accessed by the test analytes. In this work, different sensor surfaces were studied by micro-profilometry and atomic force microscopy and the functionality was evaluated using quartz crystal microbalance with dissipation (QCM-D). The molecular recognition capability of the sensors were also confirmed using radioligand binding analysis by testing their response to the presence of the test compounds, (R)- and (S)-propranolol in aqueous buffer.  相似文献   

12.
Jing T  Xia H  Niu J  Zhou Y  Dai Q  Hao Q  Zhou Y  Mei S 《Biosensors & bioelectronics》2011,26(11):4450-4456
A rapid, sensitive and selective electrochemical method was proposed for the determination of 2,4-dinitrophenol (2,4-DNP) in surface water samples, using hydrophilic molecular imprinted polymers (MIPs) as the recognition element and nickel (Ni) fiber as the catalytic element. Hydrophilic MIPs were synthesized using 2,4-DNP as the template, acrylamide as the monomer, glycidilmethacrylate as the pro-hydrophilic co-monomer and acetonitrile as the solvent. Hydrophilic modification could enhance the accessibility of 2,4-DNP to the imprinted cavities and improve the selective recognition properties of traditional MIPs in water medium. Subsequently, hydrophilic MIPs/Ni fiber electrode was prepared to determine trace 2,4-DNP by cyclic voltammetry. The parameters affecting the analytical performance were investigated. Under optimized conditions, the linear range was 0.7-30 μg L?1 and the detection limit was 0.1 μg L?1. Finally, the proposed method was applied to measure 2,4-DNP in surface water samples. The spiked recoveries were changed from 91.3% to 102.6% and the RSD was not higher than 5.1%. There was no statistically significant difference between the results obtained by the proposed method and the traditional chromatographic method.  相似文献   

13.
Molecularly imprinted polymers (MIPs) against fructosyl valine (Fru-Val), the N-terminal constituent of hemoglobin A1c β-chains, were prepared by cross-linking of β-d-Fru-Val-O-bis(4-vinylphenylboronate) with an excess of ethylene glycol dimethacrylate (EDMA) or trimethylolpropane trimethacrylate (TRIM). Control MIPs were prepared in analogy by cross-linking the corresponding vinylphenylboronate esters of fructose and pinacol. After template extraction batch rebinding studies were performed using different pH values and buffer compositions. The Fru-Val imprinted TRIM cross-linked polymer binds about 1.4 times more Fru-Val than the fructose imprinted polymer and 2.7 times more Fru-Val than pinacol imprinted polymer. The highest imprinting effect was obtained in 100 mM sodium carbonate/10% methanol (pH 11.4). The TRIM cross-linked Fru-Val imprinted polymer showed a better specificity than the EDMA cross-linked polymer. The binding of valine was very low. Thermo gravimetric analysis indicated that the generated Fru-Val imprinted polymer has high thermo stability. No change in binding was observed after incubation of the polymers in buffer at 80 °C for 36 h. Since the functional group of the polymers (phenyl boronic acid) targets the sugar part of Fru-Val the imprint technique used should also be applicable for the development of MIPs against other glycated amino acids and peptides.  相似文献   

14.
A novel sensitive and selective imprinted electrochemical sensor for the determination of oleanic acid was constructed on a carbon electrode by stepwise modification of functional multi-walled carbon nanotubes, cobalt hexacyanoferrate nanoparticles and a thin imprinted sol-gel film. The fabrication of a homogeneous porous poly (sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes/SiO(2)-chitosan nanocomposite film was conducted by controllable electrodeposition technology. The surface morphologies of the modified electrodes were characterized by scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy in detail. The imprinted sensor displayed high sensitivity and selectivity towards oleanic acid. A linear relationship between the sensor response signal and the logarithm of oleanic acid concentrations ranging from 1.0×10(-8) to 1.0×10(-3) mol L(-1) was obtained with a detection limit of 2.0×10(-9) mol L(-1). It was applied to the determination of oleanic acid in real capsule samples successfully.  相似文献   

15.
Protein imprinted electrodes formed by the cyclic voltammetric deposition of conductive polymers, on screen-printed platinum supports, in the presence of target proteins have been fabricated. An initial layer of polypyrrole was used as a supporting polymer layer, upon which were formed two layers of polyaminophenylboronic acid. The first of these layers was non-imprinted and formed a barrier between the polypyrrole and the outer layer, which was deposited in the presence of a protein template (lysozyme or cytochrome c). After protein extraction, re-binding of the template proteins to their respective imprinted electrodes showed a distinct two-phase binding profile; whereas, binding to control polymers, made in the same way but without the addition of protein templates, showed progressive binding typical of non-specific recognition. Reductions in the observed current transmission due to bonding to the polymer surface of non-conductive protein have been used as a measure of re-binding. It was found that when challenged with 1 part per million protein in solution, the current reductions for the lysozyme and cytochrome c imprinted electrodes were 30.3 and 66.2%, respectively, compared to 4.5 and 29.9% for their respective control electrodes. All measurements carried out at -0.1 V with Ag/AgCl reference.  相似文献   

16.
Polymer capable of specific binding to Cu(2+)-2, 2'-dipyridyl complex was prepared by molecular imprinting technology. The binding specificity of the polymer to the template (Cu(2+)-2, 2'-dipyridyl complex) was investigated by cyclic voltammetric scanning using the carbon paste electrode modified by polymer particles in phosphate buffer solution. Factors that influence rebinding of the imprinted polymer were explored. The results demonstrated that cyclic voltammetry was an efficient approach to explore interactions between template and imprinted polymers.  相似文献   

17.
The cyclic voltammetric behaviour of biotin hydrazide and photobiotin on carbon paste electrodes has been studied. Biotin hydrazide presents an anodic and irreversible process, meanwhile photobiotin presents two, adsorptive in nature. This characteristic makes photobiotin desirable for following the interaction between biotin and streptavidin, being possible to detect a streptavidin concentration of 10(-12) M. The evidence of this reaction has been shown either directly in solution or on the electrode surface. Photobiotin as the molecule portable of analytical information and carbon paste as the solid support could be applied to the development of sensors based on the oxidation of this molecule.  相似文献   

18.
Artemisinin is an effective antimalarial drug isolated from the herbal medicine Artemisia annua L. Molecular imprinting is a technique of preparing molecularly imprinted polymers (MIPs) which can specifically recognize the imprinted template molecules. In this work, silica gel were used as supporting matrix, and vinyltriethoxysilane (VTES) was grafted onto its surface. The preparation of MIPs for artemisinin was performed on the surfaces of the modified silica gel using artemisinin as the template, acrylamide (AM) and methacrylic acid (MAA) as the functional monomers, ethylene glycol dimethacrylate (EGDMA) as the cross-linker and 2,2'-azo-bis-isobutyronitrile (AIBN) as the initiator. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and pore size analysis were used to characterize the prepared MIPs. The adsorption kinetic curve, adsorption isotherm and selective adsorption were measured by static method. The adsorption reached equilibrium at about 10 h, while fast adsorption took place during the first 2-3 h. The maximum adsorption capacity has been found to be 37.13 mg/g according to calculation with Langmuir-Freundlich isotherm. The electivity coefficients of MIPs for artemisinin with respect to artemether and arteether were 2.88 and 3.38, respectively. The results showed that the MIPs possessed good specific adsorption capacity and selectivity for artemisinin.  相似文献   

19.
Density Functional Theory calculations have been used to select, among a set of chemicals traditionally used in the formulation of non-covalent molecularly imprinted polymers (MIPs), the best functional monomer and porogenic solvent for the construction of a recognition element for the dopamine metabolite homovanillic acid (HVA). Theoretical predictions were confirmed through batch binding assays and voltammetric detection. The computational method predicts that trifluoromethacrylic acid and toluene are the monomer and solvent rendering the highest stabilization energy for the pre-polymerization adducts. HVA-MIP prepared using this formulation gives rise to a binding isotherm that is accurately modelled by the Freundlich isotherm. The binding properties of this polymer were estimated using affinity distribution analysis. An apparent number of sites of 13 micromol g(-1) with an average affinity constant of 2 x 10(4) M(-1) was obtained in the concentration window studied.  相似文献   

20.
Group-selective molecularly imprinted polymers (MIPs) made from sulfonamides (SAs) using functional monomer methacrylic acid (MAA) were synthesized. The derived molecularly imprinted solid-phase extraction (MISPE) cartridges were developed for the purification and enrichment of aquatic products. The optimum template molecule and the ratio of the functional monomer to the template for obtaining group selectivity to SAs were sulfadimethoxine (SDM) and 4:1, respectively. The MIPs were characterized by Brunauer-Emmett-Teller (BET), scatchard plot, and chromatography analysis, all of which demonstrate better chromatographic behavior and group-selectivity of MIPs for SAs compared with those of corresponding NIPs. The extraction conditions of MISPE for six SAs were optimized; the method precision and accuracy were satisfactory for the fish and shrimp samples at 0.05, 0.1, and 0.2 mg kg(-1) spiked levels. Recoveries ranging from 85.5% to 106.1% (RSD, 1.2-7.0%, n=3) were achieved. The limits of detection (S/N=3) and quantitation (S/N=10) in the shrimp and fish samples were achieved from 8.4 to 10.9 μg kg(-1) and from 22.4 to 27.7 μg kg(-1), respectively. Therefore, the obtained MIPs and MISPE can be employed for the enrichment and clean-up of SAs. This paper presents a new analytical method which enables the simultaneous determination and quantification of SAs in aquaculture products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号