首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to determine if hemodynamic shear stress increases free cytosolic Ca2+ concentration ([Ca2+]i) of cultured pulmonary artery endothelial cells exposed to steady laminar fluid flow in a parallel plate chamber. Average [Ca2+]i was estimated by measuring cell-associated fura-2 fluorescence using microfluorimetric analysis. To determine [Ca2+]i close to the membrane surface, 86Rb+ efflux via Ca(2+)-dependent K+ channels was measured. Upon initiation of flow or upon step increases in flow, no change in [Ca2+]i was observed using fura-2. However, increases in shear stress produced a large, transient increase in 86Rb+ efflux. The shear stress-dependent increase in 86Rb+ efflux was not blocked by either tetrabutylammonium ions (20 mM) or by charybdotoxin (10 nM), two specific inhibitors of the Ca(2+)-dependent K+ channel of vascular endothelial cells. These results demonstrate that shear stress per se has little effect on either the average cytosolic [Ca2+]i as measured by fura-2 or on [Ca2+]i close to the cytoplasmic surface of the plasmalemma as measured by the activity of Ca(2+)-dependent K+ channels.  相似文献   

2.
Estimates of cytoplasmic Ca2+ concentration ([Ca2+]i) were made essentially simultaneously in the same intact frog skeletal muscle fibers with aequorin and with Ca-selective microelectrodes. In healthy fibers under truly resting conditions [Ca2+]i was too low to be measured reliably with either technique. The calibration curves for both indicators were essentially flat in this range of [Ca2+], and the aequorin light signal was uniformly below the level to be expected in the total absence of Ca2+. When [Ca2+]i had been raised to a stable level below the threshold for contracture by increasing [K+]o to 12.5 mM, [Ca2+]i was 38 nM according to aequorin and 59 nM according to the Ca-selective microelectrodes. These values are not significantly different. Our estimates of [Ca2+]i are lower than most others obtained with microelectrodes, probably because the presence of aequorin in the cells allowed us to detect damaging microelectrode impalements that otherwise we would have had no reason to reject. The observation that the light emission from aequorin-injected fibers in normal Ringer solution was below the level expected from the Ca(2+)-independent luminescence of aequorin in vitro was investigated further, with the conclusion that the myoplasm contains a diffusible macromolecule (between 10 and 30 kD) that interacts with aequorin to reduce light emission in the absence of Ca2+.  相似文献   

3.
Calcium entry in squid axons during voltage clamp pulses   总被引:1,自引:0,他引:1  
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with sodium ion sensitive, current and voltage electrodes. The axons were usually bathed in a solution of varying Ca2+ concentration ([Ca2+]o) containing 150mM each of Na+, K+ and an inert cation such as Li+, Tris or N-methylglucamine and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic Ca2+ level, [Ca2+]i. The effect of membrane voltage on [Ca2+]i was found to depend on the concentration of internal Na+ ([Na+]i). Voltage clamp hyperpolarizing pulses were found to cause a reduction of [Ca2+]i. For depolarizing pulses a relationship between [Ca2+]i gain and [Na+]i indicates that Ca2+ entry is sigmoid with a half maximal response at 22 mM Na+. This Ca2+ entry is a steep function of [Na+]i suggesting that 4 Na+ ions are required to promote the influx of 1 Ca2+. There was little change in Ca2+ entry with depolarizing pulses when [Ca2+]o is varied from 1 to 10mM, while at 50mM [Ca2+]o calcium entry clearly increases suggesting an alternate pathway from that of Na+/Ca2+ exchange. This entry of Ca2+ at high [Ca2+]o, however, was not blocked by Cs+o. The results obtained lend further support to the notion that Na+/Ca2+ exchange in squid giant axon is sensitive to membrane voltage no matter whether this is applied as a constant change in membrane potential or as an intermittent one.  相似文献   

4.
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with hydrogen ion sensitive, current and voltage electrodes. A newly designed horizontal microinjector was used to introduce the aequorin. It also served, simultaneously, as the current and voltage electrode for voltage clamping and as the reference for ion-sensitive microelectrode measurements. The axons were usually bathed in a solution containing 150 mM each of Na+, K+, and some inert cation, at either physiological or zero bath Ca2+ concentration [( Ca2+]o), and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic ionized Ca2+ level, [( Ca2+]i). Alternatively, membrane potential was steadily held at values that represented deviations from the resting membrane potential observed at 150 mM [K+]o (i.e. approximately -15 mV). In the absence of [Ca2+]o a significant steady depolarization brought about by current flow increased [Ca2+]i (and acidified the axoplasm). Changes in internal hydrogen activity, [H+]i, induced by current flow from the internal Pt wire limited the extent to which valid measurements of [Ca2+]i could be made. However, there are effects on [Ca2+]i that can be ascribed to membrane potential. Thus, in the absence of [Ca2+]o, hyperpolarization can reduce [Ca2+]i, implying that a Ca2+ efflux mechanism is enhanced. It is also observed that [Ca2+]i is increased by depolarization. These results are consistent with the operation of an electrogenic mechanism that exchanges Na+ for Ca2+ in squid giant axon.  相似文献   

5.
Histamine stimulation of swine arterial smooth muscle is associated with a high [Ca2+]i sensitivity for increases in myosin light-chain phosphorylation. In contrast, KCl depolarization produces a relatively lower [Ca2+]i sensitivity (i.e., similar increases in [Ca2+]i induce less myosin phosphorylation). We evaluated whether 1) artifacts in the methodology for measuring [Ca2+]i or 2) true alterations in the [Ca2+]i sensitivity of myosin light-chain kinase were responsible for these apparent changes in the [Ca2+]i sensitivity of phosphorylation. The [Ca2+]i sensitivity of phosphorylation was higher with histamine stimulation regardless of whether the [Ca2+]i indicator was aequorin (which was loaded intracellularly by reversible hyperpermeabilization) or Fura 2 (which was loaded intracellularly by incubation of the tissues in Fura 2 AM). Aequorin and Fura 2 appeared to detect qualitatively similar stimulus-induced changes in [Ca2+]i with the exception that the initial response to histamine stimulation was different (histamine initially induced a large aequorin light transient and a relatively smaller increase in Fura 2 fluorescence). The [Ca2+]i sensitivity of myosin light-chain kinase extracted from KCl depolarized tissues was lower than the [Ca2+]i sensitivity of myosin light-chain kinase extracted from unstimulated or histamine stimulated tissues. These results suggest that depolarization specifically modifies myosin light-chain kinase to decrease its [Ca2+]i sensitivity. Changes in the [Ca2+]i sensitivity of myosin light-chain phosphorylation are not an artifact of the [Ca2+]i measurement technique.  相似文献   

6.
The genetic transformation of the higher plant Nicotiana plumbaginifolia to express the protein apoaequorin has recently been used as a method to measure cytosolic free calcium ([Ca2+]i) changes within intact living plants (Knight, M. R., A. K. Campbell, S. M. Smith, and A. J. Trewavas. 1991. Nature (Lond.). 352:524-526; Knight, M. R., S. M. Smith, and A. J. Trewavas. 1992. Proc. Natl. Acad. Sci. USA. 89:4967-4971). After treatment with the luminophore coelenterazine the calcium-activated photoprotein aequorin is formed within the cytosol of the cells of the transformed plants. Aequorin emits blue light in a dose-dependent manner upon binding free calcium (Ca2+). Thus the quantification of light emission from coelenterazine-treated transgenic plant cells provides a direct measurement of [Ca2+]i. In this paper, by using a highly sensitive photon-counting camera connected to a light microscope, we have for the first time imaged changes in [Ca2+]i in response to cold-shock, touch and wounding in different tissues of transgenic Nicotiana plants. Using this approach we have been able to observe tissue-specific [Ca2+]i responses. We also demonstrate how this method can be tailored by the use of different coelenterazine analogues which endow the resultant aequorin (termed semi-synthetic recombinant aeqorin) with different properties. By using h-coelenterazine, which renders the recombinant aequorin reporter more sensitive to Ca2+, we have been able to image relatively small changes in [Ca2+]i in response to touch and wounding: changes not detectable when standard coelenterazine is used. Reconstitution of recombinant aequorin with another coelenterazine analogue (e-coelenterazine) produces a semi-synthetic recombinant aequorin with a bimodal spectrum of luminescence emission. The ratio of luminescence at two wavelengths (421 and 477 nm) provides a simpler method for quantification of [Ca2+]i in vivo than was previously available. This approach has the benefit that no information is needed on the amount of expression, reconstitution or consumption of aequorin which is normally required for calibration with aequorin.  相似文献   

7.
Free Ca2+ in the cytosol ([Ca2+]i) of individual rat ventricle cells injected with aequorin was measured under anoxia. In glucose-free medium myocytes spontaneously shortened after about 60 min, although [Ca2+]i was still at or near resting levels. However, within minutes a net inward movement of Ca2+ across the sarcolemma developed and [Ca2+]i began to rise. Provided oxygen was readmitted before [Ca2+]i exceeded 2-3 microM, cells were able to restore [Ca2+]i to resting levels through caffeine-sensitive sequestration of Ca2+ in the sarcoplasmic reticulum. We suggest that Ca2+-independent shortening of anoxic cardiomyocytes reflects onset of rigor which triggers loss of [Ca2+]i homoeostasis.  相似文献   

8.
Endothelial cells (ECs) that line the inner surface of blood vessels are continuously exposed to fluid frictional force (shear stress) induced by blood flow, and shear stress affects the intracellular calcium ([Ca2+]i), which initiates cellular responses. Here, we studied the effect of long-term exposure of shear stress on [Ca2+]i responses in cultured ECs by using a confocal laser microscope and calcium indicator. At the initiation of shear stress of 20 dyn/cm2 (0 hr), 27% of the cells exhibited [Ca2+]i responses. This percentage gradually decreased with increasing exposure time, reaching about 4% after 24 hr of exposure. These data indicate that long-term shear-stress exposure affects [Ca2+]i responses in cultured ECs. Furthermore, we studied the effect of magnitude of shear stress on macromolecule uptake. For the low shear-stress, the uptake was enhanced, whereas the uptake was inhibited for higher shear-stress.  相似文献   

9.
Extracellular agonists mobilize Ca2+ from SERCA-comprising intracellular Ca2+ stores located in both the Golgi apparatus and the endoplasmic reticulum. Ca2+ release from both these compartments was studied in HeLa cells stably expressing the luminescent Ca2+ indicator aequorin specifically targeted to these compartments. Changes in lumenal [Ca2+] as detected by the aequorin measurements were correlated with parallel changes in total Ca2+ content of the stores. The latencies and initial rates of Ca2+ release from the Golgi apparatus and the endoplasmic reticulum were quite similar. However, maximal Ca2+ release measured with Golgi-targeted aequorin terminated faster than that from the endoplasmic reticulum. The rate and extent of Ca2+ depletion from both compartments correlated well with the peak amplitude of the cytosolic [Ca2+] rise. Time-course experiments further revealed that the peak of the cytosolic Ca2+ response occurred before the lumenal [Ca2+] reached its lowest level. We conclude that both the Golgi apparatus and the endoplasmic reticulum contribute to the rise in cytosolic [Ca2+] upon agonist stimulation, but the kinetics of the Ca2+ release are different.  相似文献   

10.
Specifically targeted aequorin chimeras were used for studying the dynamic changes of Ca2+ concentration in different subcellular compartments of differentiated skeletal muscle myotubes. For the cytosol, mitochondria, and nucleus, the previously described chimeric aequorins were utilized; for the sarcoplasmic reticulum (SR), a new chimera (srAEQ) was developed by fusing an aequorin mutant with low Ca2+ affinity to the resident protein calsequestrin. By using an appropriate transfection procedure, the expression of the recombinant proteins was restricted, within the culture, to the differentiated myotubes, and the correct sorting of the various chimeras was verified with immunocytochemical techniques. Single-cell analysis of cytosolic Ca2+ concentration ([Ca2+]c) with fura-2 showed that the myotubes responded, as predicted, to stimuli known to be characteristic of skeletal muscle fibers, i.e., KCl-induced depolarization, caffeine, and carbamylcholine. Using these stimuli in cultures transfected with the various aequorin chimeras, we show that: 1) the nucleoplasmic Ca2+ concentration ([Ca2+]n) closely mimics the [Ca2+]c, at rest and after stimulation, indicating a rapid equilibration of the two compartments also in this cell type; 2) on the contrary, mitochondria amplify 4-6-fold the [Ca2+]c increases; and 3) the lumenal concentration of Ca2+ within the SR ([Ca2+]sr) is much higher than in the other compartments (> 100 microM), too high to be accurately measured also with the aequorin mutant with low Ca2+ affinity. An indirect estimate of the resting value (approximately 1-2 mM) was obtained using Sr2+, a surrogate of Ca2+ which, because of the lower affinity of the photoprotein for this cation, elicits a lower rate of aequorin consumption. With Sr2+, the kinetics and amplitudes of the changes in [cation2+]sr evoked by the various stimuli could also be directly analyzed.  相似文献   

11.
To determine features of the steady state [Ca2+]-tension relationship in intact heart, we measured steady force and intracellular [Ca2+] ([Ca2+]i) in tetanized ferret papillary muscles. [Ca2+]i was estimated from the luminescence emitted by muscles that had been microinjected with aequorin, a Ca2+-sensitive, bioluminescent protein. We found that by raising extracellular [Ca2+] and/or by exposing muscles to the Ca2+ channel agonist Bay K 8644, tension development could be varied from rest to an apparently saturating level, at which increases in [Ca2+]i produced no further rise in force. 95% of maximal Ca2+-activated force was reached at a [Ca2+]i of 0.85 +/- 0.06 microM (mean +/- SEM; n = 7), which suggests that the sensitivity of the myofilaments to [Ca2+]i is far greater than anticipated from studies of skinned heart preparations (or from previous studies using Ca2+-sensitive microelectrodes in intact heart). Our finding that maximal force was reached by approximately 1 microM also allowed us to calculate that the steady state [Ca2+]i-tension relationship, as it might be observed in intact muscle, should be steep (Hill coefficient of greater than 4), which is consistent with the Hill coefficient estimated from the entire [Ca2+]i-tension relationship derived from families of variably activated tetani (6.08 +/- 0.68; n = 7). Finally, with regard to whether steady state measurements can be applied directly toward understanding physiological contractions, we found that the relation between steady force and [Ca2+]i obtained during tetani was steeper than that between peak force and peak [Ca2+]i observed during physiological twitches.  相似文献   

12.
The stimulatory effect of vasoactive intestinal peptide (VIP) and analogues on [Ca2+]i has been investigated in chinese hamster ovary (CHO) cells stably transfected with the reporter gene aequorin, and expressing either the human VPAC1or VPAC2 receptor in absence or in presence of the Galpha16. In cells that were not transfected with Galpha16 and expressed a similar density of receptors, the VIP induced [Ca2+]i ncrease was higher in VPAC1 than in VPAC2 receptor expressing cells. In aequorin/Galpha16 cotransfected cells, the VIP-induced response was higher, reaching 70 to 80% of the maximal calcium response, obtained after digitonin treatment, in response to both VPAC1 and VPAC2 receptor stimulation.The results suggest that in hematopoietic cells, which express both VIP receptors and Galpha16, the signalling pathway of VIP could be mediated through both cyclic AMP and [Ca2+]i increase.  相似文献   

13.
The effects of palmatine on isometric force and intracellular free calcium levels ([Ca2+]i) were determined in isolated rat arterial strips. Palmatine dose-dependently relaxed the contractile responses stimulated by phenylephrine (PE) in aortic strips. In contrast, it only partially relaxed aortic strips contracted by 51 mM KCl. Pretreatment with palmatine shifted the dose-response curves of PE both rightwards and downwards in a dose-dependent manner. When Ca2+-free solution and re-addition of Ca2+ were applied to assess PE-induced phasic and tonic contractions, palmatine was found to be effective in inhibiting both contractions. The effects of palmatine on intracellular calcium levels were measured with the bioluminescent calcium indicator aequorin in rat tail artery strips. Palmatine caused a concomitant, dose-dependent decrease in PE-activated isometric force and [Ca2+]i, resulting in small changes in the [Ca2+]i-force relationship. These results suggest that vasodilatory effect of palmatine was mediated by reducing [Ca2+]i as well as affecting [Ca2+]i sensitivity of the contractile apparatus. Palmatine-induced [Ca2+]i decreases appeared to involve decreases in both Ca2+ release from intracellular stores and Ca2+ influx through calcium channels.  相似文献   

14.
BAY-K-8644, a calcium channel agonist, induces a rise in cytoplasmic free calcium and iodide discharge in cultured porcine thyroid cells. The cytoplasmic free calcium concentration, [Ca2+]i, was measured using aequorin, a calcium-sensitive photoprotein. BAY-K-8644, a dihydropyridine derivative, acts as a Ca channel agonist and induces a rise in [Ca2+]i and iodide discharge; 0.5 nM BAY-K-8644 is a minimal dose to effect a rise in [Ca2+]i and iodide discharge and 50 nM BAY-K-8644 produces the maximal effect. The data indicate that BAY-K-8644-induced iodide discharge is mediated by a rise in [Ca2+]i.  相似文献   

15.
The affects of volatile anesthetics on mobilization of intracellular Ca2+ was monitored in primary cultures of rat hepatocytes using the fluorescent Ca2+ probe Fura-2. The use of Fura-2 was limited by several factors which complicated the quantitative analysis of the results, such as: (i) a high rate of dye leakage; (ii) changes in the redox state of the hepatocytes which interfered with the fluorescence produced by the dye at various excitation wavelengths; (iii) compartmentalization of the dye producing high local intracellular concentrations; and, of particular importance for this study, (iv) enhanced photobleaching of the dye in the presence of halothane. To aid in the interpretation of the Fura-2 data, the Ca2(+)-sensitive photoprotein aequorin was also used to monitor changes in [Ca2+]i. The aequorin and Fura-2 techniques qualitatively yielded the same result, that the volatile anesthetic agents halothane, enflurane, and isoflurane induce an immediate and transient increase of [Ca2+]i. The durations of these transients were approximately between 5 and 10 min and were not related to any evident acute cell toxicity. The [Ca2+]i increases induced by the volatile anesthetic agents were dose-dependent, with halothane the most potent. The exact mechanism governing these increases in [Ca2+]i induced by these anesthetics in rat hepatocytes is unknown, but is likely to involve effects on both the cell surface membrane and endoplasmic reticulum components of the signal transducing system.  相似文献   

16.
The objective of these studies is to identify and characterize Ca2+-transport systems that may be of potential importance in the action of Ca2+-mobilizing hormones in the adipocyte. Using the Ca2+-sensitive photoprotein, aequorin, [Ca2+]i was estimated to be 0.15 microM, assuming an intracellular [Mg2+] of 1 mM. Substitution of Na+ with choline+ caused a transient increase in [Ca2+]i which was inversely related to extracellular [Na+], consistent with operation of a mediated Na+-Ca2+ exchange system. The stoichiometry was 3Na+:Ca2+. Elevation of extracellular K+ caused an increase in [Ca2+]i that was blocked by the Ca2+ channel antagonist, diltiazem, by omitting extracellular Ca2+, or by substituting Sr2+ for Ca2+. These findings indicate the presence of an Na+-Ca2+ exchanger and voltage-sensitive Ca2+ channels in adipocytes.  相似文献   

17.
The Ca2+-sensitive photoprotein aequorin (Mr = 20,000) was introduced into human blood platelets by incubation with 10 mM EGTA and 5 mM ATP. Platelet cytoplasmic and granule contents were retained during the loading procedure, and platelet morphology, aggregation, and secretion in response to agonists were normal after aequorin loading. Luminescence indicated an apparent resting cytoplasmic ionized calcium concentration [( Cai2+]) of 2-4 microM in media containing 1 mM Ca2+ and of 0.8-2 microM in 2-4 mM EGTA. The Ca2+ ionophore A23187 and the enzyme thrombin produced dose-related luminescent signals in both Ca2+-containing and EGTA-containing media. Peak [Cai2+] after A23187 or thrombin stimulation of aequorin-loaded platelets was 2-10 microM, while peak [Cai2+] determined using Quin 2 as the [Cai2+] indicator was at least 1 log unit lower. In platelets loaded with both aequorin and Quin 2, the aequorin signal was delayed but not reduced in amplitude. Aequorin loading of Quin 2-loaded cells had no effect on the Quin 2 signal. Ca2+ buffering by Quin 2 (intracellular concentration greater than 1 mM) is also supported by a reciprocal relationship between [Quin 2] and peak [Cai2+] stimulated by A23187 in the presence of EGTA. Parallel experiments with Quin 2 and aequorin may identify inhomogeneous [Cai2+] in platelets and give a more complete picture of platelet Ca2+ homeostasis than either indicator alone.  相似文献   

18.
The Ca2+ indicator photoprotein, aequorin, was used to estimate and monitor intracellular Ca2+ levels in Limulus ventral photoreceptors during procedures designed to affect Na+/Ca2+ exchange. Dark levels of [Ca2+]i were estimated at 0.66 +/- 0.09 microM. Removal of extracellular Na+ caused [Ca2+]i to rise transiently from an estimated 0.5-0.6 microM in a typical cell to approximately 21 microM; [Ca2+]i approached a plateau level in 0-Na+ saline of approximately 5.5 microM; restoration of normal [Na+]o lowered [Ca2+]i to baseline with a time course of 1 log10 unit per 9 s. The apparent rate of Nao+-dependent [Ca2+]i decline decreased with decreasing [Ca2+]i. Reintroduction of Ca2+ to 0-Na+, 0-Ca2+ saline in a typical cell caused a transient rise in [Ca2+]i from an estimated 0.36 microM (or lower) to approximately 16.5 microM. This was followed by a decline in [Ca2+]i approaching a plateau of approximately 5 microM; subsequent removal of Cao2+ caused [Ca2+]i to decline slowly (1 log unit in approximately 110 s). Intracellular injection of Na+ in the absence of extracellular Na+ caused a transient rise in [Ca2+]i in the presence of normal [Ca2+]o; in 0-Ca2+ saline, however, no such rise in [Ca2+]i was detected. Under constant voltage clamp (-80 mV) inward currents were measured after the addition of Nao+ to 0-Na+ 0-Ca2+ saline and outward currents were measured after the addition of Cao2+ to 0-Na+ 0-Ca2+ saline. The results suggest the presence of an electrogenic Na+/Ca2+ exchange process in the plasma membrane of Limulus ventral photoreceptors that can operate in forward (Nao+-dependent Ca2+ extrusion) or reverse (Nai+-dependent Ca2+ influx) directions.  相似文献   

19.
The luminescence of aequorin, a useful tool for studying intracellular Ca2+, was recently found to be inhibited by the free EDTA and EGTA that are present in calcium buffers. In the present study we have examined the effect of the free forms of various chelators in the calibration of [Ca2+] with aequorin. Free EDTA and EGTA in low-ionic-strength solutions strongly inhibited the Ca2+-triggered luminescence of aequorin, causing large errors in the calibration of [Ca2+] (approx. 2 pCa units), whereas in solutions containing 150mM-KCl, errors were relatively small (0.2-0.3 pCa units). Citric acid in low-ionic-strength solutions and [(carbamoylmethyl)imino]diacetic acid in high-ionic-strength solutions showed no inhibition and did not cause detectable error in the calibration of [Ca2+], indicating that they are better chelators than EDTA and EGTA for use with aequorin.  相似文献   

20.
T J Rink  T J Hallam 《Cell calcium》1989,10(5):385-395
Technical advances in studying cellular calcium concentrations, and discoveries about many aspects of signal transduction have transformed this field of biology since this Journal was launched a decade ago. At that time monitoring of the key variable, cytoplasmic free Ca2+ concentration [Ca2+]i, was possible with aequorin or arsenazo ill mainly in large invertebrate cells, though pioneering work with aequorin micro-injection into cardiac and smooth muscle had just started. At that time there was also intense activity by a few groups aiming to make Ca-selective micro-electrodes selective and sharp enough to measure [Ca2+]i in small cells. Also the use of electropermeabilized cells had begun to allow the defining of the concentrations of Ca2+ required to activate secretion in mammalian cells. Nearly all this work and all the relevant electrophysiology relating to calcium signalling had been done in excitable cells, basically muscle and nerve, and was aimed at understanding contraction, transmitter release and neurosecretion, and the control of membrane permeability. Recent advances have now allowed [Ca2+]i to be measured in non-excitable cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号