首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among those few hypotheses of Amazonian diversification amenable to falsification by phylogenetic and population genetics methods, three can be singled out because of their general application to vertebrates: the riverine barrier, the refuge, and the Miocene marine incursion hypotheses. I used phylogenetic and population genetics methods to reconstruct the diversification history of the upland (terra-firme) forest superspecies Xiphorhynchus spixii/elegans (Aves: Dendrocolaptidae) in Amazonia, and to evaluate predictions of the riverine barrier, refuge, and Miocene marine incursion hypotheses. Phylogeographic and population genetics analyses of the X. spixiilelegans superspecies indicated that the main prediction of the riverine barrier hypothesis (that sister lineages occur across major rivers) hold only for populations separated by "clear-water" rivers located on the Brazilian shield, in central and eastern Amazonia; in contrast, "white-water" rivers located in western Amazonia did not represent areas of primary divergence for populations of this superspecies. The main prediction derived from the refuge hypothesis (that populations of the X. spixii/elegans superspecies would show signs of past population bottlenecks and recent demographic expansions) was supported only for populations found in western Amazonia, where paleoecological data have failed to support past rainforest fragmentation and expansion of open vegetation types; conversely, populations from the eastern and central parts of Amazonia, where paleoecological data are consistent with an historical interplay between rainforest and open vegetation types, did not show population genetics attributes expected under the refuge hypothesis. Phylogeographic and population genetics data were consistent with the prediction made by the Miocene marine incursion hypothesis that populations of the X. spixii/elegans superspecies found on the Brazilian shield were older than populations from other parts of Amazonia. In contrast, the phylogeny obtained for lineages of this superspecies falsified the predicted monophyly of Brazilian shield populations, as postulated by the Miocene marine incursion hypothesis. In general, important predictions of both riverine barrier and Miocene marine incursion hypotheses were supported, indicating that they are not mutually exclusive; in fact, the data presented herein suggest that an interaction among geology, sea level changes, and hydrography created opportunities for cladogenesis in the X. spixii/elegans superspecies at different temporal and geographical scales.  相似文献   

2.
Sequence variation in the mitochondrial cytochrome b gene was examined in the arboreal spiny rat, Mesomys hispidus, collected at 15 sites along the Rio Juruá in western Amazonia, Brazil, to determine the importance of riverine barriers in the diversification of this taxon. Twenty individual haplotypes were uncovered, most of which were unique to single localities but some of which were shared among adjacent sites either along or across the river. Genealogical analyses suggest that gene flow is limited and, in combination with the unique distribution of most haplotypes, suggest that populations of this species are strongly substructured along the river. Thus, most sharing of haplotypes between adjacent localities is probably caused by historical association rather than to ongoing gene flow. Two haplotype clades were uncovered, but these correspond to headwaters versus mouth areas, not to opposite sides of the river, as would be expected by the Riverine Barrier Hypothesis. Moreover, haplotype sharing across the river was greater at its mouth than in the headwaters, a pattern opposite that expected if the river were a substantive barrier. Broader scale phylogeographic patterns of this species show that both clades have relationships to areas well outside the Rio Juruá basin. This suggests that the basin represents a relatively recent point of invasion between two more broadly distributed and differentiated geographic units of the species.  相似文献   

3.
Aim To investigate the phylogeography and execute a historical‐demographic analysis of the Neotropical rattlesnake, Crotalus durissus, thereby testing the hypothesis of a Pleistocene central Amazon corridor of dry forest or savanna that partitioned the Amazonian rain forest into western and eastern portions. Location South America. Methods Using sequences of three mitochondrial genes, we estimated the phylogeography, gene and nucleotide diversity across the South American range of C. durissus. Tree topology tests were used to test alternative biogeographical hypotheses, and tests of population genetic structure and statistical parsimony networks and nested clade phylogeographic analysis (NCPA) were used to infer connectivity and historical population processes on both sides of the Amazon basin. Results Tree topology tests rejected the hypothesis of a coastal dispersal in favour of a central corridor scenario. Gene diversity was similar on both sides of the Amazon basin. Nucleotide diversity indicated that the populations from north of the Amazon basin represented ancestral populations. Analysis of molecular variance (amova ) showed that intra‐population molecular variation was greater than between regions. Historical‐demographic statistics showed significant population expansion south of the Amazon, and little differentiation in the north, indicating moderate past gene flow between north and south of the Amazon. The parsimony network connected clades from the Roraima and Guyana populations with Mato Grosso, suggesting an Amazonian central corridor, and NCPA supported allopatric fragmentation between north and south of the Amazon. Main conclusions The distribution of C. durissus on both sides of the Amazon basin is evidence of changes in the distribution of rain forest vegetation during the Pleistocene. Our results suggest a formerly continuous distribution of this rattlesnake along a central Amazonian corridor during the middle Pleistocene. Allopatric fragmentation inferred from NCPA is consistent with vicariance resulting from a subsequent closure of this habitat corridor. This study emphasizes the potential of trans‐Amazonian open formation species to inform the debate on the past distribution of rain forests in the Amazon Basin.  相似文献   

4.
Patterns and levels of allozyme variation among populations of Amazonian frogs were used to test the riverine barrier hypothesis of species differentiation. Two frog species were sampled from each of the two main forest habitats on both banks of the Juruá River in the southwestern Brazilian Amazon Basin at various points along its course to contrast different barrier strengths. Scarthyla ostinodactyla and Scinax rubra were sampled from flooded forest (varzea), and Physalaemus petersi and Epipedobates femoralis from non-flooded forest (terra firme). All species showed high levels of within-population genetic variation. Average Nei's (1978) and Rogers’ (1972) genetic distances between sampled sites for all species were high indicating substantial among-population differentiation. The observation of low gene flow between sampled sites within species was further substantiated with Slatkin's (1993) M? analyses. Randomization tests suggested that there was some population structure at a few assayed polymorphic loci that was consistent with the riverine barrier hypothesis. However, it was apparent from the raw allozyme frequency data that these results were largely driven by substantial differentiation at one or a few collecting localities rather than by basin-wide patterns of riverine differentiation. Phenograms using genetic distance matrices supported this interpretation. Patterns of geographic variation are probably more consistent with the idea of this region being a zone of secondary contact.  相似文献   

5.
The evolutionary basis for high species diversity in tropical regions of the world remains unresolved. Much research has focused on the biogeography of speciation in the Amazon Basin, which harbors the greatest diversity of terrestrial life. The leading hypotheses on allopatric diversification of Amazonian taxa are the Pleistocene refugia, marine incursion, and riverine barrier hypotheses. Recent advances in the fields of phylogeography and species-distribution modeling permit a modern re-evaluation of these hypotheses. Our approach combines comparative, molecular phylogeographic analyses using mitochondrial DNA sequence data with paleodistribution modeling of species ranges at the last glacial maximum (LGM) to test these hypotheses for three co-distributed species of leafcutter ants (Atta spp.). The cumulative results of all tests reject every prediction of the riverine barrier hypothesis, but are unable to reject several predictions of the Pleistocene refugia and marine incursion hypotheses. Coalescent dating analyses suggest that population structure formed recently (Pleistocene-Pliocene), but are unable to reject the possibility that Miocene events may be responsible for structuring populations in two of the three species examined. The available data therefore suggest that either marine incursions in the Miocene or climate changes during the Pleistocene--or both--have shaped the population structure of the three species examined. Our results also reconceptualize the traditional Pleistocene refugia hypothesis, and offer a novel framework for future research into the area.  相似文献   

6.
1. The freshwater crayfish Cherax dispar (Decapoda: Parastacidae) inhabits coastal regions and islands of South East Queensland, Australia. We hypothesised that populations of C. dispar on different islands would be more genetically divergent from each other than populations from different drainages within the same island or on the mainland. 2. Phylogenetic and phylogeographic analyses were conducted on two mitochondrial genes (cytochrome oxidase subunit I & 16S ribosomal DNA) and one nuclear gene (Internal Transcribed Spacer region 2). Phylogeographic patterns were compared with those for other freshwater organisms in the area. 3. Deep genetic divergences were found within C. dispar, including four highly divergent (up to 20%) clades. The geographic distribution of each of the clades revealed strong latitudinal structuring along the coast rather than structuring among the islands. The high genetic divergence observed among the C. dispar clades was estimated to have pre‐dated island formation and may represent ancient river drainage patterns. 4. A restricted distribution was observed for the most divergent clade, which was discovered only on two of the sand islands (North Stradbroke Island and Moreton Island). Furthermore, strong phylogeographic structuring was observed within this clade on North Stradbroke Island, where no haplotypes were shared between samples from opposite sides of the island. This low connectivity within the island supports the idea that C. dispar rarely disperse terrestrially (i.e. across watersheds).  相似文献   

7.
Wallace's riverine barrier hypothesis postulates that large rivers, such as the Amazon and its tributaries, reduce or prevent gene flow between populations on opposite banks, leading to allopatry and areas of species endemism occupying interfluvial regions. Several studies have shown that two major tributaries, Rio Branco and Rio Negro, are important barriers to gene flow for birds, amphibians and primates. No botanical studies have considered the potential role of the Rio Branco as a barrier, while a single botanical study has evaluated the Rio Negro as a barrier. We studied an Amazon shrub, Amphirrhox longifolia (A. St.‐Hil.) Spreng (Violaceae), as a model to test the riverine barrier hypothesis. Twenty‐six populations of A. longifolia were sampled on both banks of the Rio Branco and Rio Negro in the core Amazon Basin. Double‐digest RADseq was used to identify 8,010 unlinked SNP markers from the nuclear genome of 156 individuals. Data relating to population structure support the hypothesis that the Rio Negro acted as a significant genetic barrier for A. longifolia. On the other hand, no genetic differentiation was detected among populations spanning the narrower Rio Branco, which is a tributary of the Rio Negro. This study shows that the strength of riverine barriers for Amazon plants is dependent on the width of the river separating populations and species‐specific dispersal traits. Future studies of plants with contrasting life history traits will further improve our understanding of the landscape genetics and allopatric speciation history of Amazon plant diversity.  相似文献   

8.
The mechanisms that underlie the diversification of Neotropical primates remain contested. One mechanism that has found support is the riverine barrier hypothesis (RBH), which postulates that large rivers impede gene flow between populations on opposite riverbanks and promote allopatric speciation. Ayres and Clutton-Brock (1992) demonstrated that larger Amazonian rivers acted as barriers, delineating the distribution limits of primate species. However, profound changes in taxonomy and species concepts have led to the proliferation of Neotropical primate taxa, which may have reduced support for their results. Using the most recent taxonomic assessments and distribution maps, we tested the effect of increasing river size on the similarity of opposite riverbank primate communities in the Amazon. First, we conducted a literature review of primate taxonomy and developed a comprehensive spatial database, then applied geographical information system to query mapped primate ranges against the riverine geography of the Amazon watershed to produce a similarity index for opposite riverbank communities. Finally, we ran models to test how measures of river size predicted levels of similarity. We found that, almost without exception, similarity scores were lower than scores from Ayres and Clutton-Brock (1992) for the same rivers. Our model showed a significant negative relationship between streamflow and similarity in all tests, and found river width significant for the segmented Amazon, but not for multiple Amazon watershed rivers. Our results support the RBH insofar as they provide evidence for the prediction that rivers with higher streamflow act as more substantial barriers to dispersal, and accordingly exhibit greater variation in community composition between riverbanks.  相似文献   

9.
Many hypotheses have been proposed to explain the origin and maintenance of the Amazonian diversity with special place for the theory of isolation by rivers and a set of hypothesis related to contemporary environmental dissimilarity. We explore those hypotheses here using the biogeographic distributional patterns of dragonflies in interfluve areas of the Amazonian biome and also evaluate how differences among in dispersal capabilities between the Anisoptera and Zygoptera suborders may contribute to those patterns. We used distributional information of 392 odonate species in the Amazonian forest in a cladistic analysis of distributions and endemism and the estimated faunistic similarity among interfluves with the Sorensen index. The environmental similarity among interfluves was analysed by discriminant analysis based on eight environmental metrics. Different metrics for geographic distance (connectivity) among interfluves were evaluated and their relation to the other variables tested by the Mantel test. The number of endemic species was linearly correlated to the area of the interfluves. General endemism patterns showed consistent resemblance to those reported for vertebrates, especially the similarity among the Rond?nia and Inambari interfluves. Geographical distance has no predictive value for dragonflies distribution, but the environmental similarity is a good predictor of proportion of shared species. The low dispersal group (Zygoptera) presented more clear patterns of distribution and a lower proportion of shared species among different interfluves. The environmental similarity can be considered the determinant factor of the distribution of dragonflies, possibly due to environmental specificity evolved during a long history of some clades in this system. The low dispersal group (Zygoptera) retained more biogeographical information about possible historical factors that determine current distribution. Also, the transport of larvae by macrophyte banks, the lateral change of river courses, the reversal of the drainage basin, together with the capacity to disperse across rivers for some species may be explanations for the lack of effect of isolation by rivers, especially for Anisoptera.  相似文献   

10.
Diversification processes acting across geographically continuous populations have been rarely documented in Amazonia, because of the lack of fine-scale sampling over extensive areas. We aimed to determine the geographic effects of an environmental transition zone and large rivers on the intraspecific population structure of the Manaus slender-legged tree frog (Osteocephalus taurinus) along a ~ 900 km transect of tropical rain forest. Using one mitochondrial (16S), two nuclear genes (TYR, POMC) and three microsatellites, we estimated the population structure, phylogenetic relationships and geographic variation of 262 O. taurinus and 5 O. oophagus (a close relative) along the Purus–Madeira interfluve (PMI) and opposite banks of the central Amazon and upper Madeira rivers, at central-southern Amazonia, Brazil. Six genetic clusters were identified: two corresponding to sympatric populations of O. taurinus and O. oophagus from their type locality, north of Amazon river. Within PMI, there were three distinct O. taurinus genetic clusters distributed along the geographic gradient with one main phylogeographic break found (concordant between 16S and TYR), that corresponds to a transition zone (ecotone) between dense and open rain forest ecotypes. The sixth cluster was an O. taurinus population isolated at the east bank of the upper Madeira river. In addition, restricted haplotype sharing was identified from the west to east banks at upper Madeira river. Within PMI, parapatric genetic structure is explained by a potential association of the genetic clusters to the different forest ecotypes they inhabit coupled with isolation by distance, thus supporting the gradient hypothesis for diversification. Differentiation of populations that are external to the PMI is most likely explained by the barrier effect of the Madeira and Amazon rivers. Our findings provide new evidence on diversification processes across continuous Amazonian landscapes; however, the specific mechanisms underlying the origin and maintenance of the identified phylogeographic break need to be further studied.  相似文献   

11.
The Amazon Basin harbors one of the richest biotas on Earth, such that a number of diversification hypotheses have been formulated to explain patterns of Amazonian biodiversity and biogeography. For nearly two decades, phylogeographic approaches have been applied to better understand the underlying causes of genetic differentiation and geographic structure among Amazonian organisms. Although this research program has made progress in elucidating several aspects of species diversification in the region, recent methodological and theoretical developments in the discipline of phylogeography will provide new perspectives through more robust hypothesis testing. Herein, we outline central aspects of Amazonian geology and landscape evolution as well as climate and vegetation dynamics through the Neogene and Quaternary to contextualize the historical settings considered by major hypotheses of diversification. We address each of these hypotheses by reviewing key phylogeographic papers and by expanding their respective predictions. We also propose future directions for devising and testing hypotheses. Specifically, combining the exploratory power of phylogeography with the statistical rigor of coalescent methods will greatly expand analytical inferences on the evolutionary history of Amazonian biota. Incorporation of non-genetic data from Earth science disciplines into the phylogeographic approach is key to a better understanding of the influence of climatic and geophysical events on patterns of Amazonian biodiversity and biogeography. In addition, achieving such an integrative enterprise must involve overcoming issues such as limited geographic and taxonomic sampling. These future challenges likely will be accomplished by a combination of extensive collaborative research and incentives for conducting basic inventories.  相似文献   

12.
The age and origin of the mesic coniferous forest ecosystem of the Pacific Northwest of North America have long been the subject of debate by biogeographers. Cardamine constancei, an endemic of the Rocky Mountain segment of this ecosystem, was subjected to phylogeographic analysis to test explicit hypotheses on the age of the ecosystem. We have predicted genetic homogeneity among river drainages if C. constancei and other associated species migrated into the region after glaciation, in contrast to the genetic differentiation that may have accrued if the species and its ecosystem have long survived in the relatively warm river canyons south of glaciation. We detected 19 haplotypes with divergence up to 1.5%, and they comprise 4 well-differentiated cpDNA clades. These clades are allopatric except for two haplotypes from the lower Clearwater clade that appear to have dispersed north into partial sympatry with the clade endemic to St.␣Joe River. The divergence and distribution of these clades is consistent with the existence of a complex glacial refugium with at least four compartments. The surprisingly high cpDNA diversity within this species suggests that conservation of mesic coniferous forest ecosystems in the region warrant a conservation plan that accounts for the historically imposed spatial structure of genetic diversity. We are currently testing our phylogeographic hypotheses by the comparative analyses of a suite of plants, animals and fungi.  相似文献   

13.
The Neotropics are one of the most species rich regions on Earth, with over 3150 species of birds. This unrivaled biodiversity has been attributed to higher proportions of mountain ranges, tropical rain forest or rain fall in the forest than in any other major biogeographic regions. Five primary hypotheses aim to explain processes of diversification within the Neotropics; (1) the Pleistocene refuge hypothesis, (2) the riverine barrier hypothesis, (3) the Miocene marine incursions hypothesis, (4) the ecological gradient hypothesis, and (5) the impact of the last Andean uplift serving as a barrier between eastern and western population Andean populations. We assessed these hypotheses to see which best explained the species richness of the forest-falcons (Micrastur), a poorly known lineage of birds that inhabit lowland and mid-elevation humid forest. Our analyses suggest all speciation events within the genus Micrastur probably occurred in the last 2.5-3.6 myrs, at or before the Pliocene/Pleistocene boundary, with the basal split within the genus being 7 myrs old. Hence our data allow us to formerly reject the classical Pleistocene refuge for Micrastur, Our divergence time estimates are younger that dates for the Miocene marine incursions, the riverine barrier and the Andean uplift hypotheses.  相似文献   

14.
Aim We investigated whether the largest river (Mangoro) on the east coast of Madagascar acts as a barrier to dispersal in dung beetles by comparing species composition and genetic differentiation of the most common species on the two banks of the river. Moreover, by analysing the current geographical ranges of all wet forest dung beetle species, possible long‐term effects of the largest rivers on the distribution of species were assessed. Location Madagascar. Methods Dung beetles were sampled with baited pitfall traps at a downstream and an upstream locality on the two banks of the Mangoro River. The most common species, Nanos binotatus (Canthonini), was sequenced for cytochrome c oxidase subunit I (COI; 804 bp) to characterize within‐population diversity and between‐population genetic differentiation. For the analysis of species geographical range boundaries in relation to the position of the largest rivers on the east coast, a database including all the records for 158 wet forest species was used. The congruence of species range boundaries with the positions of the rivers was tested with a randomization test. Results All common species were found on both sides of the Mangoro River. In Nanos binotatus, haplotype and nucleotide diversities ranged from 0.25 to 0.85 and 0.001 to 0.01, respectively. Population differentiation was high and significant in all comparisons (P < 0.01; average FST = 0.61). The differentiation was not significantly higher across than along the river, as would be expected by the riverine barrier hypothesis. There was no indication that the range boundaries of wet forest dung beetle species would generally coincide with the largest rivers in eastern Madagascar. Main conclusions The results provide little support for the riverine barrier hypothesis as an explanation for the current range boundaries of dung beetles in eastern Madagascar. However, extensive deforestation of the coastal regions in eastern Madagascar may have caused a great shrinkage of the ranges of many forest‐dwelling species. Thus the present‐day distributions may not reflect accurately the patterns of the past geographical ranges of the species.  相似文献   

15.
The study of Amazonian biodiversity requires detailed knowledge of the phylogenetic relationships of closely related taxa distributed across Amazonia. The Amazonian poison frogs of the genus Dendrobates have undergone many taxonomic revisions, but the phylogenetic relationships within this group remain poorly understood. Most previous classifications were based on morphology and skin toxin analyses, with limited use of DNA sequence data. Using mtDNA sequence data from four gene regions (cytochrome b, cytochrome oxidase I, 16S rRNA, and 12S rRNA), we present a molecular phylogenetic analysis of the evolutionary relationships within a representative group of Amazonian Dendrobates. We use the resulting phylogenetic hypothesis to investigate different biogeographic hypotheses concerning genetic divergence and species diversity in Amazonia. The results of the analysis support the presence of ancient paleogeographic barriers to gene flow between eastern and western Amazonia, and indicate substantial genetic divergence between species found in the northern and southern regions of western Amazonia.  相似文献   

16.
Genetic diversity and phylogeographic population structure in the gammarid amphipod, Gammarus duebeni, were investigated across its broad latitudinal distribution in the NE and NW Atlantic by analysis of mitochondrial DNA sequence. Gammarus duebeni has exceptional tolerance of salinity change and inhabits environments ranging from marine to freshwater. The longstanding debate on whether there are distinct marine and freshwater subspecies was assessed by sampling populations from sites characterized by different salinities. Our sequence data demonstrates that there are two major lineages, with little internal geographic structuring. Evidence is provided to suggest a pre-glacial divergence of these two clades, involving segregation between a region historically associated with the freshwater form and the majority of the marine localities on both sides of the Atlantic. A modern contact zone between the marine and freshwater forms is proposed in western Britain.  相似文献   

17.
Several hypotheses have been proposed to explain the biogeographic processes that generate the high species richness of the Amazon basin. We tested two of them in a terra firme (upland) forest frog species, Physalaemus petersi: (1) the riverine barrier hypothesis; and (2) the elevational gradient hypothesis. Mitochondrial DNA sequence data (2.4 kb) from the 12S, 16S, and intervening valine tRNA genes were obtained from 65 P. petersi individuals and 4 outgroup taxa and analyzed with a combination of phylogenetic and population genetic approaches. Moderate support for the riverine barrier hypothesis was found for one of the three rivers examined, but little evidence was found for the elevational gradient hypothesis. Phylogenetic analyses revealed that high levels of sequence divergence (an average of 4.57-4.79%) separate three well-supported clades from the northwestern, southwestern, and eastern Amazon. Strong evidence for recent population expansion in P. petersi in the southwestern region of the Amazon basin was also uncovered.  相似文献   

18.
Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is one of the major cereal pests in sub-Saharan Africa. Previous phylogeographic investigations on samples collected in Kenya, Cameroon and West-Africa showed the presence of three main clades (W, KI, KII) originated from populations isolated in West and East Africa around one million years ago. Demographic and phylogenetic analyses suggested that this event was followed by local demographic expansion and isolation by distance. These hypotheses were tested by a more comprehensive sampling across B. fusca’s geographic range in Africa. Comparisons of sequences of partial mitochondrial DNA gene (cytochrome b) from 489 individuals of 98 localities in southern, central, eastern and western African countries confirmed the presence of the three main clades. Phylogenetic, F-statistics, demographic parameters and nested clade phylogeographic analyses confirmed that the clades experienced geographic and demographic expansion with isolation by distance after their isolation in three refuge areas. The geographic range of clade KII, already known from East to Central sub-Saharan Africa was extended to Southern Africa. Mismatch distribution analysis and the negative values of Tajima’s D index are consistent with a demographic expansion hypothesis for these three clades. Significant genetic differentiations were revealed at various hierarchical levels by analysis of molecular variance (AMOVA). Hypotheses about the geographic origin of the three main clades are detailed.  相似文献   

19.
Diversifications within a biota are due to several factors. Although some of these are untestable with current analytical methods, hierarchical congruence obtained with different cladistic methods and based on independent taxa are undoubtedly important. In the recent past, most hypotheses of historical biogeography (e.g. refugial, riverine, disturbance, vicariance) were tested on the Amazonian biota, selecting a number of diverse organisms such as plants, anurans, lizards, butterflies, birds and monkeys. In this study we used parsimony analysis of endemicity to infer historical relationships among 16 interfluvial areas in the Amazonian lowlands based on raw distributions of 114 Papilioninae (Lepidoptera). The analysis yielded two most parsimonious trees of area relationships. One tree was characterized by two main clusters of areas which showed a separation of Guyanan + south-east Amazonian interfluvial areas from western Amazonian interfluvial areas. The second tree showed the Guyanan interfluvial areas basal to a cluster which included all the other interfluvial areas. This latter cluster was subdivided into two main groups of areas separating the south-east Amazonian and the western Amazonian interfluvial areas. This result is discussed in the light of previous hypotheses obtained with the same method using some vertebrate taxa in the Amazonian lowlands. Likewise, comparisons with other hypotheses on lineages of birds, mammals and butterflies obtained applying cladistic biogeographical methods are made. The two alternative vicariant patterns presented for papilionid butterflies are strictly congruent with those for birds.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 345–357.  相似文献   

20.
The Neotropics harbors a high diversity of species and several hypotheses have been proposed to account for this pattern. However, while species of forested domains are frequently studied, less is known of species from open vegetation formations occupying, altogether, a larger area than the Amazon Forest. Here we evaluate the role of historical barriers and the riverine hypothesis in the speciation patterns of small mammals by analyzing an ancient rodent lineage (Thrichomys, Hystricomorpha). Phylogenetic and biogeographic analyses were carried out with mitochondrial and nuclear DNA markers to analyze the evolutionary relationships between Thrichomys lineages occurring in dry domains along both banks of the Rio São Francisco. This river is one of the longest of South America whose course and water flow have been modified by inland tectonic activities and climate changes. Molecular data showed a higher number of lineages than previously described. The T. inermis species complex with 2n = 26, FN = 48 was observed in both banks of the river showing a paraphyletic arrangement, suggesting that river crossing had occurred, from east to west. A similar pattern was also observed for the T. apereoides complex. Thrichomys speciation occurred in Late Miocene when the river followed a different course. The current geographic distribution of Thrichomys species and their phylogenetic relationships suggested the existence of frequent past connections between both banks in the middle section of the Rio São Francisco. The extensive palaeodune region found in this area has been identified as a centre of endemism of several vertebrate species and is likely to be a center of Thrichomys diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号